Penguins

GP: 48 | W: 28 | L: 17 | OTL: 3 | P: 59
GF: 114 | GA: 109 | PP%: 8.60% | PK%: 84.48%
GM : Anthony Bottoni | Morale : 50 | Team Overall : 59
Next Games #746 vs Bruins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Anthony Cirelli (R)X100.007343897667655658807272722545457550630
2Scott WilsonXX100.008444957366629161496159722561626750630
3Greg McKeggX100.006942907170557960795858792555566550620
4Lawson CrouseX100.009198817782598561365059712555556550620
5Samuel BlaisX98.747943848459577865256459682545456650620
6Anders Bjork (R)XX97.006742938068625865447264522550506550610
7Dominik SimonXX100.007643857364597966396962612547476650610
8Jean-Sebastien DeaX100.006964796264848964806262625944446450610
9Josh ArchibaldXX99.008557827064627759426262722549496750610
10Michael MerschX100.007873916873565563506162665944446550600
11Evgeny Svechnikov (R)XX100.007644837379528956316266572545456550600
12Teddy Blueger (R)XXX100.007268826868737662785861635844446450600
13Paul MartinX100.006742957374667462255247622582885850640
14Brendan Guhle (R)X100.006742837573755868256347622546466050610
15Andreas EnglundX100.007871947471768446253739623744445450600
16Roland McKeownX100.006197507475628854256547552544445750590
17Vincent LoVerdeX100.007873896073727850253749634744445750580
Scratches
1Alan QuineX100.008044937571626256576255672555566250600
2Taylor LeierX100.006140946962576464566056722548486250590
3Rourke Chartier (R)X100.007566976466636363796360645744446450590
4Scott KosmachukX100.006867706067778161505958605544446150580
5Jayce Hawryluk (R)XX100.006666666766687061766156595344446050580
6Freddie Tiffels (R)XX100.008074946574525252654456645344445950550
7Anton ZlobinX100.00637370675548575667545755504444150540
8Troy Josephs (R)XX100.007270776270484949614547594544445250510
9Blaine Byron (R)X100.007264896464545647594444594244445250510
10Jan KostalekX100.007368866468606446252849594744445350550
11Harrison RuoppX100.00567364715955585325474655504444150540
12Jeff Taylor (R)X100.007268826568505244253439583744444950530
TEAM AVERAGE99.82736184706862705848555563384848575059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pheonix Copley99.00547088824956515852523044445550570
Scratches
TEAM AVERAGE99.0054708882495651585252304444555057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mark Recchi68547150454656CAN503600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anders BjorkPenguins (PIT)LW/RW4817213844206312014551611.72%493019.39371030197000006246.34%4100000.8200000853
2Josh ArchibaldPenguins (PIT)LW/RW4814152948010947312992110.85%1272515.1252725143000001033.33%3900010.8000001124
3Samuel BlaisPenguins (PIT)LW461117284240388010431610.58%967014.5825717128000004232.50%4000000.8411000424
4Greg McKeggPenguins (PIT)C4861016-2120157165479.23%94739.86000000000252062.64%45500000.6811000112
5Dominik SimonPenguins (PIT)C/LW486915-31603667695128.70%150310.50011442000000045.95%3700000.6000000132
6Brendan GuhlePenguins (PIT)D264111553006932270014.81%2659923.0714522102000087000.00%000000.5000000134
7Teddy BluegerPenguins (PIT)C/LW/RW4841014-11753532573117.02%54489.3400011000000059.26%2700000.6201001113
8Vincent LoVerdePenguins (PIT)D482810145409115170611.76%2559412.3800042500000100.00%000000.3400000100
9Roland McKeownPenguins (PIT)D4818907915902915206.67%3079016.47011785101184000.00%000000.2300030012
10Jean-Sebastien DeaPenguins (PIT)C483584401835433116.98%23086.4300026000000155.48%30100000.5226000110
11Andreas EnglundPenguins (PIT)D48257-1695813229116.90%4784217.55000884000080100.00%000000.1700100015
12Michael MerschPenguins (PIT)LW483252135213033289.09%12886.0000000000000036.84%1900000.3503001111
13Evgeny SvechnikovPenguins (PIT)LW/RW481342160132143122.33%22876.0000000000000036.84%1900000.2800000000
Team Total or Average600741241983245640664637776381119.54%173746312.44112031120817101127715555.62%97800010.53412133202130
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jordan BinningtonPenguins37251110.9121.75222406657410000.85020370532
2Pheonix CopleyPenguins (PIT)123520.8303.8358021372180010.66731148010
Team Total or Average49281630.8942.182804271029590010.826234848542


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alan QuinePenguins (PIT)C251993-02-24No200 Lbs6 ft0NoNoNo2ELCPro & Farm700,000$0$0$NoLink
Anders BjorkPenguins (PIT)LW/RW221996-08-05Yes186 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Andreas EnglundPenguins (PIT)D221996-01-21No189 Lbs6 ft3NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Anthony CirelliPenguins (PIT)C211997-07-15Yes180 Lbs6 ft0NoNoNo3ELCPro & Farm750,000$0$0$NoLink
Anton ZlobinPenguins (PIT)LW251993-02-22No209 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Blaine ByronPenguins (PIT)C231995-02-21Yes172 Lbs6 ft0NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Brendan GuhlePenguins (PIT)D211997-07-29Yes186 Lbs6 ft1NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Dominik SimonPenguins (PIT)C/LW241994-08-08No176 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Evgeny SvechnikovPenguins (PIT)LW/RW221996-10-30Yes199 Lbs6 ft2NoNoNo2ELCPro & Farm900,000$0$0$NoLink
Freddie TiffelsPenguins (PIT)C/LW231995-05-20Yes201 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Greg McKeggPenguins (PIT)C261992-06-17No191 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Harrison RuoppPenguins (PIT)D251993-03-17No192 Lbs6 ft3NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Jan KostalekPenguins (PIT)D231995-02-16No181 Lbs6 ft1NoNoNo1ELCPro & Farm600,000$0$0$NoLink
Jayce HawrylukPenguins (PIT)C/RW231995-12-31Yes186 Lbs5 ft11NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Jean-Sebastien DeaPenguins (PIT)C241994-02-08No175 Lbs5 ft11NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Jeff TaylorPenguins (PIT)D241994-04-13Yes185 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Josh ArchibaldPenguins (PIT)LW/RW261992-10-06No176 Lbs5 ft10NoNoNo2ELCPro & Farm675,000$0$0$NoLink
Lawson CrousePenguins (PIT)LW211997-06-23No220 Lbs6 ft4NoNoNo2ELCPro & Farm950,000$0$0$NoLink
Michael MerschPenguins (PIT)LW271992-01-10No213 Lbs6 ft2NoNoNo1RFAPro & Farm675,000$0$0$NoLink
Paul MartinPenguins (PIT)D371981-03-04No200 Lbs6 ft1NoNoNo1UFAPro & Farm4,850,000$0$0$NoLink
Pheonix CopleyPenguins (PIT)G271992-01-17No196 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Roland McKeownPenguins (PIT)D231996-01-19No195 Lbs6 ft1NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Rourke ChartierPenguins (PIT)C221996-04-02Yes190 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Samuel BlaisPenguins (PIT)LW221996-06-16No164 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Scott KosmachukPenguins (PIT)RW241994-01-23No185 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Scott WilsonPenguins (PIT)C/LW261992-04-23No183 Lbs5 ft11NoNoNo1ELCPro & Farm625,000$0$0$NoLink
Taylor LeierPenguins (PIT)LW241994-02-14No174 Lbs5 ft10NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Teddy BluegerPenguins (PIT)C/LW/RW241994-08-14Yes185 Lbs6 ft0NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Troy JosephsPenguins (PIT)C/LW241994-05-09Yes194 Lbs6 ft0NoNoNo2ELCPro & Farm575,000$0$0$NoLink
Vincent LoVerdePenguins (PIT)D291989-04-13No205 Lbs5 ft11NoNoNo1UFAPro & Farm600,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3024.30190 Lbs6 ft01.83803,333$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders Bjork40122
2Josh Archibald30122
3Dominik SimonGreg McKeggTeddy Blueger20122
4Michael MerschJean-Sebastien DeaEvgeny Svechnikov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Andreas EnglundRoland McKeown30122
3Vincent LoVerde20122
4Andreas Englund10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders Bjork60122
2Josh Archibald40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Andreas EnglundRoland McKeown40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Greg McKegg40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Andreas EnglundRoland McKeown40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Andreas EnglundRoland McKeown40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Greg McKegg40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Andreas EnglundRoland McKeown40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anders Bjork
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anders Bjork
Extra Forwards
Normal PowerPlayPenalty Kill
Dominik Simon, Jean-Sebastien Dea, Teddy BluegerDominik Simon, Jean-Sebastien DeaTeddy Blueger
Extra Defensemen
Normal PowerPlayPenalty Kill
Vincent LoVerde, Roland McKeown, Vincent LoVerdeRoland McKeown,
Penalty Shots
, , , Greg McKegg,
Goalie
#1 : , #2 : Pheonix Copley


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans1010000016-51010000016-50000000000000.0001120037412992434435434138305620300.00%3166.67%0680130851.99%620125949.25%30265546.11%12699431118317538270
2Barracuda11000000101110000001010000000000021.0001120137412992734435434138241814500.00%40100.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
3Bears531000101394210000104223210000097280.80013223500374129910234435434138922958872727.41%28775.00%1680130851.99%620125949.25%30265546.11%12699431118317538270
4Bruins21001000752210010007520000000000041.0007121900374129950344354341383494539600.00%13192.31%2680130851.99%620125949.25%30265546.11%12699431118317538270
5Checkers10001000321100010003210000000000021.00036900374129919344354341381341415500.00%7271.43%0680130851.99%620125949.25%30265546.11%12699431118317538270
6Comets2110000045-12110000045-10000000000020.50047110037412994034435434138511722449111.11%8187.50%0680130851.99%620125949.25%30265546.11%12699431118317538270
7Condors1010000002-2000000000001010000002-200.00000000374129922344354341381831115300.00%3233.33%0680130851.99%620125949.25%30265546.11%12699431118317538270
8Crunch321000001073211000007701100000030340.66710192901374129980344354341387216267118211.11%110100.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
9Devils22000000734000000000002200000073441.0007121900374129947344354341383816143911327.27%7271.43%0680130851.99%620125949.25%30265546.11%12699431118317538270
10Falcons20000011550000000000002000001155030.75055100037412993234435434138401032489111.11%13192.31%1680130851.99%620125949.25%30265546.11%12699431118317538270
11Griffins2110000046-21010000003-31100000043120.5004812003741299553443543413837122634500.00%13376.92%0680130851.99%620125949.25%30265546.11%12699431118317538270
12Gulls32000100862210001006601100000020250.833815230137412996234435434138481036641200.00%130100.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
13IceCaps1010000002-2000000000001010000002-200.0000000037412992234435434138364619200.00%30100.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
14Icehogs11000000312000000000001100000031221.00034700374129919344354341382163119200.00%8187.50%0680130851.99%620125949.25%30265546.11%12699431118317538270
15Marlies1010000045-1000000000001010000045-100.00048120037412994134435434138278818200.00%4175.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
16Moose32000010945210000106331100000031261.000915240137412997534435434138842522681900.00%110100.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
17Phantoms4210001013583210000010371000001032160.75013183101374129987344354341389034768620315.00%19194.74%0680130851.99%620125949.25%30265546.11%12699431118317538270
18Pirates1010000025-3000000000001010000025-300.000235003741299153443543413823910154125.00%5260.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
19Rampage11000000211110000002110000000000021.0002460037412993134435434138168815700.00%30100.00%1680130851.99%620125949.25%30265546.11%12699431118317538270
20Reign30300000510-52020000058-31010000002-200.00059141037412995534435434138642647641317.69%19478.95%0680130851.99%620125949.25%30265546.11%12699431118317538270
21Senators31100010752110000002022010001055040.6677121901374129957344354341384717386317317.65%17288.24%0680130851.99%620125949.25%30265546.11%12699431118317538270
22Sound Tigers3120000035-2110000001012020000025-320.3333580137412994634435434138491820541417.14%10280.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
Total48211702152114109524127021205951824910000325558-3590.6151141923061737412991056344354341381009301584964221198.60%2323684.48%5680130851.99%620125949.25%30265546.11%12699431118317538270
24Wolf Pack20100001310-70000000000020100001310-710.2503690037412994834435434138551420538112.50%10370.00%0680130851.99%620125949.25%30265546.11%12699431118317538270
_Since Last GM Reset48211702152114109524127021205951824910000325558-3590.6151141923061737412991056344354341381009301584964221198.60%2323684.48%5680130851.99%620125949.25%30265546.11%12699431118317538270
_Vs Conference36171001152917417181040112049341518760003242402490.6819115124217374129976834435434138737225442750179179.50%1752386.86%4680130851.99%620125949.25%30265546.11%12699431118317538270
_Vs Division1783001304234875100110187111032000202427-3230.676426911102374129934934435434138337115202334851011.76%811779.01%1680130851.99%620125949.25%30265546.11%12699431118317538270

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4859W11141923061056100930158496417
All Games
GPWLOTWOTL SOWSOLGFGA
4821172152114109
Home Games
GPWLOTWOTL SOWSOLGFGA
2412721205951
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2491000325558
Last 10 Games
WLOTWOTL SOWSOL
350101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
221198.60%2323684.48%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
344354341383741299
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
680130851.99%620125949.25%30265546.11%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12699431118317538270


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-025Bears1Penguins2WXXBoxScore
3 - 2018-10-0422Penguins2Bears3LBoxScore
6 - 2018-10-0746Crunch4Penguins3LBoxScore
8 - 2018-10-0956Penguins3Senators2WXXBoxScore
10 - 2018-10-1171Penguins3Phantoms2WXXBoxScore
12 - 2018-10-1379Phantoms2Penguins1LBoxScore
14 - 2018-10-1596Penguins3Bears1WBoxScore
16 - 2018-10-17114Bruins2Penguins3WXBoxScore
18 - 2018-10-19130Penguins1Sound Tigers2LBoxScore
20 - 2018-10-21142Bears1Penguins2WBoxScore
22 - 2018-10-23163Comets4Penguins1LBoxScore
24 - 2018-10-25174Penguins3Devils2WBoxScore
27 - 2018-10-28197Penguins2Gulls0WBoxScore
29 - 2018-10-30207Gulls2Penguins3WBoxScore
32 - 2018-11-02230Phantoms1Penguins5WBoxScore
34 - 2018-11-04247Penguins2Falcons3LXXBoxScore
36 - 2018-11-06260Senators0Penguins2WBoxScore
38 - 2018-11-08274Penguins3Falcons2WXXBoxScore
40 - 2018-11-10285Penguins0Reign2LBoxScore
42 - 2018-11-12298Penguins3Icehogs1WBoxScore
43 - 2018-11-13308Comets1Penguins3WBoxScore
46 - 2018-11-16327Sound Tigers0Penguins1WBoxScore
48 - 2018-11-18344Penguins3Moose1WBoxScore
50 - 2018-11-20357Checkers2Penguins3WXBoxScore
51 - 2018-11-21370Penguins4Devils1WBoxScore
54 - 2018-11-24388Penguins0Condors2LBoxScore
56 - 2018-11-26397Griffins3Penguins0LBoxScore
58 - 2018-11-28419Bruins3Penguins4WBoxScore
60 - 2018-11-30428Penguins2Senators3LBoxScore
62 - 2018-12-02444Penguins4Bears3WBoxScore
64 - 2018-12-04458Barracuda0Penguins1WBoxScore
66 - 2018-12-06472Penguins4Griffins3WBoxScore
68 - 2018-12-08487Penguins0IceCaps2LBoxScore
69 - 2018-12-09494Rampage1Penguins2WBoxScore
72 - 2018-12-12517Moose0Penguins1WXXBoxScore
76 - 2018-12-16540Penguins3Crunch0WBoxScore
77 - 2018-12-17553Americans6Penguins1LBoxScore
81 - 2018-12-21573Penguins0Wolf Pack6LBoxScore
82 - 2018-12-22585Crunch3Penguins4WBoxScore
86 - 2018-12-26607Penguins3Wolf Pack4LXXBoxScore
87 - 2018-12-27614Reign2Penguins1LBoxScore
90 - 2018-12-30636Phantoms0Penguins4WBoxScore
92 - 2019-01-01654Penguins4Marlies5LBoxScore
94 - 2019-01-03669Gulls4Penguins3LXBoxScore
96 - 2019-01-05683Penguins1Sound Tigers3LBoxScore
98 - 2019-01-07698Penguins2Pirates5LBoxScore
99 - 2019-01-08706Reign6Penguins4LBoxScore
102 - 2019-01-11729Moose3Penguins5WBoxScore
104 - 2019-01-13746Penguins-Bruins-
105 - 2019-01-14753Penguins-Monsters-
108 - 2019-01-17770Bruins-Penguins-
110 - 2019-01-19791Penguins-Reign-
111 - 2019-01-20801Heat-Penguins-
113 - 2019-01-22814Penguins-Stars-
116 - 2019-01-25830Wolf Pack-Penguins-
118 - 2019-01-27850Penguins-Barracuda-
120 - 2019-01-29862Senators-Penguins-
123 - 2019-02-01885Penguins-Barracuda-
124 - 2019-02-02892Wolves-Penguins-
127 - 2019-02-05917Devils-Penguins-
128 - 2019-02-06929Penguins-Rampage-
130 - 2019-02-08942Penguins-Gulls-
132 - 2019-02-10954Gulls-Penguins-
134 - 2019-02-12963Penguins-Senators-
137 - 2019-02-15984Bears-Penguins-
141 - 2019-02-191008Falcons-Penguins-
143 - 2019-02-211022Penguins-Wild-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241041Monsters-Penguins-
149 - 2019-02-271066Admirals-Penguins-
151 - 2019-03-011077Penguins-Wolves-
154 - 2019-03-041096Bears-Penguins-
155 - 2019-03-051100Penguins-Phantoms-
158 - 2019-03-081124Falcons-Penguins-
161 - 2019-03-111138Penguins-Phantoms-
162 - 2019-03-121146Penguins-Comets-
167 - 2019-03-171173Monsters-Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
14 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,855,008$ 2,410,000$ 2,410,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,490,443$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 17,811$ 1,193,337$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201848211702152114109524127021205951824910000325558-3591141923061737412991056344354341381009301584964221198.60%2323684.48%5680130851.99%620125949.25%30265546.11%12699431118317538270
Total Regular Season48211702152114109524127021205951824910000325558-3591141923061737412991056344354341381009301584964221198.60%2323684.48%5680130851.99%620125949.25%30265546.11%12699431118317538270