Penguins

GP: 21 | W: 14 | L: 6 | OTL: 1 | P: 29
GF: 25 | GA: 18 | PP%: 7.37% | PK%: 87.85%
GM : Anthony Bottoni | Morale : 50 | Team Overall : 59
Next Games vs Bears
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Greg McKeggX100.006942907170557960795858792555566550620
2Samuel BlaisX100.007943848459577865256459682545456650620
3Anders Bjork (R)XX98.006742938068625865447264522550506550610
4Dominik SimonXX100.007643857364597966396962612547476650610
5Jean-Sebastien DeaX100.006964796264848964806262625944446450610
6Josh ArchibaldXX100.008557827064627759426262722549496750610
7Michael MerschX100.007873916873565563506162665944446550600
8Evgeny Svechnikov (R)XX100.007644837379528956316266572545456550600
9Teddy Blueger (R)XXX100.007268826868737662785861635844446450600
10Brendan Guhle (R)X100.006742837573755868256347622546466050610
11Andreas EnglundX100.007871947471768446253739623744445450600
12Roland McKeownX100.006197507475628854256547552544445750590
13Vincent LoVerdeX100.007873896073727850253749634744445750580
Scratches
1Anthony Cirelli (R)X100.007343897667655658807272722545457550630
2Scott WilsonXX100.008444957366629161496159722561626750630
3Lawson CrouseX100.009198817782598561365059712555556550620
4Alan QuineX100.008044937571626256576255672555566250600
5Taylor LeierX100.006140946962576464566056722548486250590
6Rourke Chartier (R)X100.007566976466636363796360645744446450590
7Scott KosmachukX100.006867706067778161505958605544446150580
8Jayce Hawryluk (R)XX100.006666666766687061766156595344446050580
9Freddie Tiffels (R)XX100.008074946574525252654456645344445950550
10Anton ZlobinX100.00637370675548575667545755504444150540
11Troy Josephs (R)XX100.007270776270484949614547594544445250510
12Blaine Byron (R)X100.007264896464545647594444594244445250510
13Paul MartinX100.006742957374667462255247622582885850640
14Jan KostalekX100.007368866468606446252849594744445350550
15Harrison RuoppX100.00567364715955585325474655504444150540
16Jeff Taylor (R)X100.007268826568505244253439583744444950530
TEAM AVERAGE99.93736184706862705848555563384848575059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jordan Binnington99.00685974627069727773733044446950650
2Pheonix Copley100.00547088824956515852523044445550570
Scratches
TEAM AVERAGE99.5061658172606362686363304444625061
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Mark Recchi68547150454656CAN503600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anders BjorkPenguins (PIT)LW/RW21961532002559630014.29%340419.273141089000003136.36%2200000.7400000512
2Samuel BlaisPenguins (PIT)LW21681441201434460013.04%629213.92123353000002113.33%1500000.9611000222
3Josh ArchibaldPenguins (PIT)LW/RW21661244554421430013.95%429514.08213954000000045.45%1100010.8100000110
4Brendan GuhlePenguins (PIT)D21381132605726220013.64%2049923.771231987000076000.00%000000.4400000033
5Vincent LoVerdePenguins (PIT)D211678320398100010.00%1432915.6900011800000000.00%000000.4200000100
6Jean-Sebastien DeaPenguins (PIT)C21336420715150020.00%11336.3800004000000153.54%12700000.9025000110
7Roland McKeownPenguins (PIT)D2115614810471370014.29%1139318.72011363101166000.00%000000.3100020012
8Greg McKeggPenguins (PIT)C21134-14063021004.76%62029.63000000000161061.49%16100000.4011000000
9Michael MerschPenguins (PIT)LW212242009880025.00%01255.9700000000000018.18%1100000.6403000111
10Andreas EnglundPenguins (PIT)D2112303554516100010.00%1840019.06000563000062100.00%000000.1500100012
11Dominik SimonPenguins (PIT)C/LW21213-180162524008.33%021710.38000221000000031.58%1900000.2800000100
12Evgeny SvechnikovPenguins (PIT)LW/RW2111226061519005.26%11255.9700000000000028.57%700000.3200000000
13Teddy BluegerPenguins (PIT)C/LW/RW21112040161218005.56%21868.9000000000000062.50%800000.2101000002
Team Total or Average27337528929242203312823060012.09%86360613.2177145245610112237351.71%38100010.49411120121114
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jordan BinningtonPenguins (PIT)2114610.9111.73128502374180000.82417210211
Team Total or Average2114610.9111.73128502374180000.82417210211


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alan QuinePenguins (PIT)C251993-02-24No200 Lbs6 ft0NoNoNo2ELCPro & Farm700,000$700,000$Link
Anders BjorkPenguins (PIT)LW/RW221996-08-05Yes186 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Andreas EnglundPenguins (PIT)D221996-01-21No189 Lbs6 ft3NoNoNo2ELCPro & Farm850,000$850,000$Link
Anthony CirelliPenguins (PIT)C211997-07-15Yes180 Lbs6 ft0NoNoNo3ELCPro & Farm750,000$750,000$750,000$Link
Anton ZlobinPenguins (PIT)LW251993-02-22No209 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$Link
Blaine ByronPenguins (PIT)C231995-02-21Yes172 Lbs6 ft0NoNoNo1ELCPro & Farm500,000$Link
Brendan GuhlePenguins (PIT)D211997-07-29Yes186 Lbs6 ft1NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Dominik SimonPenguins (PIT)C/LW241994-08-08No176 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$Link
Evgeny SvechnikovPenguins (PIT)LW/RW221996-10-30Yes199 Lbs6 ft2NoNoNo2ELCPro & Farm900,000$900,000$Link
Freddie TiffelsPenguins (PIT)C/LW231995-05-20Yes201 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Greg McKeggPenguins (PIT)C261992-06-17No191 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$Link
Harrison RuoppPenguins (PIT)D251993-03-17No192 Lbs6 ft3NoNoNo1ELCPro & Farm700,000$Link
Jan KostalekPenguins (PIT)D231995-02-16No181 Lbs6 ft1NoNoNo1ELCPro & Farm600,000$Link
Jayce HawrylukPenguins (PIT)C/RW221995-12-31Yes186 Lbs5 ft11NoNoNo2ELCPro & Farm850,000$850,000$Link
Jean-Sebastien DeaPenguins (PIT)C241994-02-08No175 Lbs5 ft11NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Jeff TaylorPenguins (PIT)D241994-04-13Yes185 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Jordan BinningtonPenguins (PIT)C/LW251993-07-11No167 Lbs6 ft1NoNoNo4ELCPro & Farm850,000$850,000$850,000$850,000$Link
Josh ArchibaldPenguins (PIT)LW/RW261992-10-06No176 Lbs5 ft10NoNoNo2ELCPro & Farm675,000$675,000$Link
Lawson CrousePenguins (PIT)LW211997-06-23No220 Lbs6 ft4NoNoNo2ELCPro & Farm950,000$950,000$Link
Michael MerschPenguins (PIT)LW261992-01-10No213 Lbs6 ft2NoNoNo1ELCPro & Farm675,000$Link
Paul MartinPenguins (PIT)D371981-03-04No200 Lbs6 ft1NoNoNo1UFAPro & Farm4,850,000$Link
Pheonix CopleyPenguins (PIT)LW/RW261992-01-17No196 Lbs6 ft4NoNoNo1ELCPro & Farm650,000$Link
Roland McKeownPenguins (PIT)D221996-01-19No195 Lbs6 ft1NoNoNo2ELCPro & Farm800,000$800,000$Link
Rourke ChartierPenguins (PIT)C221996-04-02Yes190 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$500,000$Link
Samuel BlaisPenguins (PIT)LW221996-06-16No164 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$500,000$Link
Scott KosmachukPenguins (PIT)RW241994-01-23No185 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$650,000$Link
Scott WilsonPenguins (PIT)C/LW261992-04-23No183 Lbs5 ft11NoNoNo1ELCPro & Farm625,000$Link
Taylor LeierPenguins (PIT)LW241994-02-14No174 Lbs5 ft10NoNoNo2ELCPro & Farm800,000$800,000$Link
Teddy BluegerPenguins (PIT)C/LW/RW241994-08-14Yes185 Lbs6 ft0NoNoNo2ELCPro & Farm800,000$800,000$Link
Troy JosephsPenguins (PIT)C/LW241994-05-09Yes194 Lbs6 ft0NoNoNo2ELCPro & Farm575,000$575,000$Link
Vincent LoVerdePenguins (PIT)D291989-04-13No205 Lbs5 ft11NoNoNo1UFAPro & Farm600,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3124.19189 Lbs6 ft01.90804,839$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders Bjork40122
2Samuel BlaisJosh Archibald30122
3Dominik SimonGreg McKeggTeddy Blueger20122
4Michael MerschJean-Sebastien DeaEvgeny Svechnikov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brendan Guhle40122
2Andreas EnglundRoland McKeown30122
3Vincent LoVerde20122
4Brendan GuhleAndreas Englund10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anders Bjork60122
2Samuel BlaisJosh Archibald40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Brendan Guhle60122
2Andreas EnglundRoland McKeown40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Greg McKegg40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Brendan Guhle60122
2Andreas EnglundRoland McKeown40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Brendan Guhle60122
240122Andreas EnglundRoland McKeown40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Greg McKegg40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brendan Guhle60122
2Andreas EnglundRoland McKeown40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anders BjorkBrendan Guhle
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anders BjorkBrendan Guhle
Extra Forwards
Normal PowerPlayPenalty Kill
Dominik Simon, Jean-Sebastien Dea, Teddy BluegerDominik Simon, Jean-Sebastien DeaTeddy Blueger
Extra Defensemen
Normal PowerPlayPenalty Kill
Vincent LoVerde, Roland McKeown, Vincent LoVerdeRoland McKeown,
Penalty Shots
, , , Greg McKegg, Samuel Blais
Goalie
#1 : Jordan Binnington, #2 : Pheonix Copley


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bears42100010963210000104222110000054160.750914230011221278211514113220721844671815.56%21576.19%025754447.24%26854848.91%12427145.76%555406489142241122
2Bruins10001000321100010003210000000000021.00035800112212722115141132201623325300.00%8187.50%225754447.24%26854848.91%12427145.76%555406489142241122
3Comets2110000045-12110000045-10000000000020.50047110011221274011514113220511722449111.11%8187.50%025754447.24%26854848.91%12427145.76%555406489142241122
4Crunch1010000034-11010000034-10000000000000.0003580011221272511514113220240223900.00%10100.00%025754447.24%26854848.91%12427145.76%555406489142241122
5Devils11000000321000000000001100000032121.00036900112212725115141132201966196116.67%3166.67%025754447.24%26854848.91%12427145.76%555406489142241122
6Falcons20000011550000000000002000001155030.75055100011221273211514113220401032489111.11%13192.31%125754447.24%26854848.91%12427145.76%555406489142241122
7Gulls22000000523110000003211100000020241.000591401112212738115141132203272039700.00%100100.00%025754447.24%26854848.91%12427145.76%555406489142241122
8Icehogs11000000312000000000001100000031221.00034700112212719115141132202163119200.00%8187.50%025754447.24%26854848.91%12427145.76%555406489142241122
9Phantoms31100010954211000006331000001032140.6679112000112212750115141132207332706812216.67%16193.75%025754447.24%26854848.91%12427145.76%555406489142241122
10Reign1010000002-2000000000001010000002-200.00000000112212710115141132201871220500.00%40100.00%025754447.24%26854848.91%12427145.76%555406489142241122
11Senators21000010523110000002021000001032141.00058130111221273911514113220291122421119.09%10190.00%025754447.24%26854848.91%12427145.76%555406489142241122
Since Last GM Reset2196010415038121053010102518711430003125205290.6905075125021122127392115141132204181263044389577.37%1071387.85%325754447.24%26854848.91%12427145.76%555406489142241122
13Sound Tigers1010000012-1000000000001010000012-100.000112001122127101151411322023101024400.00%5180.00%025754447.24%26854848.91%12427145.76%555406489142241122
Total2196010415038121053010102518711430003125205290.6905075125021122127392115141132204181263044389577.37%1071387.85%325754447.24%26854848.91%12427145.76%555406489142241122
Vs Conference187501041433211842010102113810330003122193250.6944364107021122127333115141132203461032513758467.14%911187.91%325754447.24%26854848.91%12427145.76%555406489142241122
Vs Division96200030221574410001010555210002012102181.000223254001122127167115141132201876613017840410.00%45882.22%025754447.24%26854848.91%12427145.76%555406489142241122

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2129W2507512539241812630443802
All Games
GPWLOTWOTL SOWSOLGFGA
219610415038
Home Games
GPWLOTWOTL SOWSOLGFGA
105310102518
Visitor Games
GPWLOTWOTL SOWSOLGFGA
114300312520
Last 10 Games
WLOTWOTL SOWSOL
710011
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
9577.37%1071387.85%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
115141132201122127
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
25754447.24%26854848.91%12427145.76%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
555406489142241122


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-025Bears1Penguins2WXXBoxScore
3 - 2018-10-0422Penguins2Bears3LBoxScore
6 - 2018-10-0746Crunch4Penguins3LBoxScore
8 - 2018-10-0956Penguins3Senators2WXXBoxScore
10 - 2018-10-1171Penguins3Phantoms2WXXBoxScore
12 - 2018-10-1379Phantoms2Penguins1LBoxScore
14 - 2018-10-1596Penguins3Bears1WBoxScore
16 - 2018-10-17114Bruins2Penguins3WXBoxScore
18 - 2018-10-19130Penguins1Sound Tigers2LBoxScore
20 - 2018-10-21142Bears1Penguins2WBoxScore
22 - 2018-10-23163Comets4Penguins1LBoxScore
24 - 2018-10-25174Penguins3Devils2WBoxScore
27 - 2018-10-28197Penguins2Gulls0WBoxScore
29 - 2018-10-30207Gulls2Penguins3WBoxScore
32 - 2018-11-02230Phantoms1Penguins5WBoxScore
34 - 2018-11-04247Penguins2Falcons3LXXBoxScore
36 - 2018-11-06260Senators0Penguins2WBoxScore
38 - 2018-11-08274Penguins3Falcons2WXXBoxScore
40 - 2018-11-10285Penguins0Reign2LBoxScore
42 - 2018-11-12298Penguins3Icehogs1WBoxScore
43 - 2018-11-13308Comets1Penguins3WBoxScore
46 - 2018-11-16327Sound Tigers-Penguins-
48 - 2018-11-18344Penguins-Moose-
50 - 2018-11-20357Checkers-Penguins-
51 - 2018-11-21370Penguins-Devils-
54 - 2018-11-24388Penguins-Condors-
56 - 2018-11-26397Griffins-Penguins-
58 - 2018-11-28419Bruins-Penguins-
60 - 2018-11-30428Penguins-Senators-
62 - 2018-12-02444Penguins-Bears-
64 - 2018-12-04458Barracuda-Penguins-
66 - 2018-12-06472Penguins-Griffins-
68 - 2018-12-08487Penguins-IceCaps-
69 - 2018-12-09494Rampage-Penguins-
72 - 2018-12-12517Moose-Penguins-
76 - 2018-12-16540Penguins-Crunch-
77 - 2018-12-17553Americans-Penguins-
81 - 2018-12-21573Penguins-Wolf Pack-
82 - 2018-12-22585Crunch-Penguins-
86 - 2018-12-26607Penguins-Wolf Pack-
87 - 2018-12-27614Reign-Penguins-
90 - 2018-12-30636Phantoms-Penguins-
92 - 2019-01-01654Penguins-Marlies-
94 - 2019-01-03669Gulls-Penguins-
96 - 2019-01-05683Penguins-Sound Tigers-
98 - 2019-01-07698Penguins-Pirates-
99 - 2019-01-08706Reign-Penguins-
102 - 2019-01-11729Moose-Penguins-
104 - 2019-01-13746Penguins-Bruins-
105 - 2019-01-14753Penguins-Monsters-
108 - 2019-01-17770Bruins-Penguins-
110 - 2019-01-19791Penguins-Reign-
111 - 2019-01-20801Heat-Penguins-
113 - 2019-01-22814Penguins-Stars-
116 - 2019-01-25830Wolf Pack-Penguins-
118 - 2019-01-27850Penguins-Barracuda-
120 - 2019-01-29862Senators-Penguins-
123 - 2019-02-01885Penguins-Barracuda-
124 - 2019-02-02892Wolves-Penguins-
127 - 2019-02-05917Devils-Penguins-
128 - 2019-02-06929Penguins-Rampage-
130 - 2019-02-08942Penguins-Gulls-
132 - 2019-02-10954Gulls-Penguins-
134 - 2019-02-12963Penguins-Senators-
137 - 2019-02-15984Bears-Penguins-
141 - 2019-02-191008Falcons-Penguins-
143 - 2019-02-211022Penguins-Wild-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241041Monsters-Penguins-
149 - 2019-02-271066Admirals-Penguins-
151 - 2019-03-011077Penguins-Wolves-
154 - 2019-03-041096Bears-Penguins-
155 - 2019-03-051100Penguins-Phantoms-
158 - 2019-03-081124Falcons-Penguins-
161 - 2019-03-111138Penguins-Phantoms-
162 - 2019-03-121146Penguins-Comets-
167 - 2019-03-171173Monsters-Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,495,000$ 2,480,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
805,816$ 0$ 649,572$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 18,314$ 2,289,250$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182196010415038121053010102518711430003125205295075125021122127392115141132204181263044389577.37%1071387.85%325754447.24%26854848.91%12427145.76%555406489142241122
Total Regular Season2196010415038121053010102518711430003125205295075125021122127392115141132204181263044389577.37%1071387.85%325754447.24%26854848.91%12427145.76%555406489142241122