Heat

GP: 47 | W: 17 | L: 25 | OTL: 5 | P: 39
GF: 100 | GA: 122 | PP%: 12.92% | PK%: 86.61%
GM : Dave Williams | Morale : 50 | Team Overall : 58
Next Games #734 vs Comets
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kenny AgostinoX100.007574787274828765506560655745456650630
2Joshua Ho-SangX100.005740968164676373368259572547476650630
3Tomas JurcoXX100.007143878172636562346272662562636950630
4Garnet HathawayXXX99.009199606881618359286258702556566450620
5Josh JoorisX98.007843877467567059575858727563646450620
6Curtis LazarXX99.008555897272567558446256652564656350610
7Kyle RauXX100.006761807161818663795962615947476550610
8Quinton HowdenX100.007770946570737857714958675556566250600
9Turner ElsonX100.007068756168555555504956605344445850540
10John GilmourX100.007543857466729069255049632546466150620
11Tyler WotherspoonX100.007878796578687255255243644144445750600
12Patrick SieloffX100.008175946675657145253639633744445250580
13Eric RoyX100.00607068625856576425575162504848150560
14Kenney MorrisonX100.007878776378525350254639633744445250560
15Reece Willcox (R)X100.007570876470636747253940603844445250560
16Adam Ollas Mattsson (R)X100.008178876578505341252839623744445050540
Scratches
1Hunter SmithX88.747881726381596152505247634544445550550
2Austin CarrollXX100.007678726478576049504151614844445550530
3Brandon Gignac (R)X100.007263936663576047594147594544445350520
4Bryce Van BrabantX100.006876496276565946504146574444445050510
5Brett KulakX98.756752887571627358254848652556565950610
6Michael DowningX100.007777776677424146253740613844445050540
7Ryan CulkinX100.008075926275454741253839613744444850530
TEAM AVERAGE99.28756781687261665539505063414949555058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Peter Budaj99.00516581734651505648483068695250560
Scratches
TEAM AVERAGE99.0051658173465150564848306869525056
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ryan Huska65675553534757CAN401750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Josh JoorisHeat (CGY)C47181129-666011314714661912.33%785418.17369291780000202153.94%85100000.6803000643
2Tyler WotherspoonHeat (CGY)D4781927172014136567914.29%4291319.455914451701011152200.00%000000.5900000243
3Garnet HathawayHeat (CGY)C/LW/RW47131326-97515127899251814.13%1067014.26471123135000000336.59%69700000.7811300415
4John GilmourHeat (CGY)D4752126-55601135563587.94%3896020.43448491620000159300.00%000000.5400000242
5Curtis LazarHeat (CGY)C/RW4791625-919524658411810.71%467214.3136922136000000140.00%4500000.7400001212
6Kyle RauHeat (CGY)C/LW479615514029818441810.71%150310.71033635000012057.61%46000100.6003000220
7Brett KulakHeat (CGY)D4331013-5255554244436.82%4187120.26123311450000156000.00%000000.3000001021
8Michael DowningHeat (CGY)D402810-238104317110118.18%122957.380000000000010.00%000000.6800002023
9Kenney MorrisonHeat (CGY)D47077-1276085123020.00%2455911.9100001000070000.00%000000.2500000002
10Eric RoyHeat (CGY)D47246-111603033200210.00%1352711.2301151800004100.00%000000.2301000001
11Reece WillcoxHeat (CGY)D24123-46013550020.00%172028.4600004000023000.00%000000.3000000000
12Hunter SmithHeat (CGY)RW34101-1295332629003.45%33149.2500000000060066.67%1200000.0600100000
13Patrick SieloffHeat (CGY)D5011100716000.00%69418.93000522011018000.00%000000.2100000001
Team Total or Average52271118189-5749240813609643428811.04%218744014.252038582151011112161510648.67%206500100.5118404182023
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Peter BudajHeat (CGY)47172450.8822.582674221159730000.727114747133
Team Total or Average47172450.8822.582674221159730000.727114747133


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam Ollas MattssonHeat (CGY)D221996-07-30Yes216 Lbs6 ft5NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Austin CarrollHeat (CGY)LW/RW241994-03-25No212 Lbs6 ft3NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Brandon GignacHeat (CGY)C211997-11-07Yes173 Lbs5 ft11NoNoNo3ELCPro & Farm700,000$0$0$NoLink
Brett KulakHeat (CGY)D241994-05-01No187 Lbs6 ft2NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Bryce Van BrabantHeat (CGY)LW271991-11-12No205 Lbs6 ft2NoNoNo3RFAPro & Farm875,000$0$0$NoLink
Curtis LazarHeat (CGY)C/RW231995-02-02No209 Lbs6 ft0NoNoNo1ELCPro & Farm850,000$0$0$NoLink
Eric RoyHeat (CGY)D241994-10-24No181 Lbs6 ft3NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Garnet HathawayHeat (CGY)C/LW/RW271991-11-23No208 Lbs6 ft2NoNoNo3RFAPro & Farm725,000$0$0$NoLink
Hunter Smith (Out of Payroll)Heat (CGY)RW231995-09-10No208 Lbs6 ft7NoNoNo1ELCPro & Farm800,000$0$0$YesLink
John GilmourHeat (CGY)D251993-05-16No195 Lbs6 ft0NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Josh JoorisHeat (CGY)C281990-07-14No197 Lbs6 ft1NoNoNo3UFAPro & Farm800,000$0$0$NoLink
Joshua Ho-SangHeat (CGY)RW221996-01-22No173 Lbs6 ft0NoNoNo2ELCPro & Farm900,000$0$0$NoLink
Kenney MorrisonHeat (CGY)D261992-02-12No208 Lbs6 ft2NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Kenny AgostinoHeat (CGY)LW261992-04-30No200 Lbs6 ft1NoNoNo3ELCPro & Farm735,000$0$0$NoLink
Kyle RauHeat (CGY)C/LW261992-10-24No178 Lbs5 ft8NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Michael DowningHeat (CGY)D231995-05-19No205 Lbs6 ft3NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Patrick SieloffHeat (CGY)D241994-05-14No205 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$0$0$NoLink
Peter BudajHeat (CGY)G361982-09-17No196 Lbs6 ft1NoNoNo1UFAPro & Farm750,000$0$0$NoLink
Quinton HowdenHeat (CGY)LW261992-01-20No189 Lbs6 ft2NoNoNo3ELCPro & Farm1,250,000$0$0$NoLink
Reece WillcoxHeat (CGY)D241994-03-19Yes184 Lbs6 ft3NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Ryan CulkinHeat (CGY)D251993-12-14No201 Lbs6 ft2NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Tomas JurcoHeat (CGY)LW/RW261992-12-27No188 Lbs6 ft2NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Turner ElsonHeat (CGY)LW261992-09-12No195 Lbs6 ft0NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Tyler WotherspoonHeat (CGY)D251993-03-11No207 Lbs6 ft2NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2425.13197 Lbs6 ft21.96709,792$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Josh Jooris40122
2Garnet HathawayCurtis Lazar30122
3Kyle Rau20122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1John Gilmour40122
2Tyler Wotherspoon30122
3Eric RoyKenney Morrison20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Josh Jooris60122
2Garnet HathawayCurtis Lazar40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1John Gilmour60122
2Tyler Wotherspoon40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Josh Jooris40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1John Gilmour60122
2Tyler Wotherspoon40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122John Gilmour60122
240122Tyler Wotherspoon40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Josh Jooris40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1John Gilmour60122
2Tyler Wotherspoon40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Josh JoorisJohn Gilmour
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Josh JoorisJohn Gilmour
Extra Forwards
Normal PowerPlayPenalty Kill
Kyle Rau, , Kyle Rau,
Extra Defensemen
Normal PowerPlayPenalty Kill
Eric Roy, Kenney Morrison, Eric RoyKenney Morrison,
Penalty Shots
, , , Josh Jooris, Garnet Hathaway
Goalie
#1 : , #2 : Peter Budaj


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals421000101055100000102113210000084460.75010162600323234387306312321226526457821523.81%190100.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
2Americans31100100111101000010023-12110000098130.50011193000323234367306312321229922267519421.05%12283.33%0599127846.87%597128446.50%31864849.07%11738381118327549274
3Barracuda11000000321110000003210000000000021.00036900323234393063123212220516153133.33%8187.50%0599127846.87%597128446.50%31864849.07%11738381118327549274
4Bruins11000000514000000000001100000051421.0005101500323234328306312321221671019000.00%50100.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
5Checkers3110000156-1210000014221010000014-330.500510150132323437830631232122772336621516.67%16381.25%0599127846.87%597128446.50%31864849.07%11738381118327549274
6Comets1010000013-2000000000001010000013-200.0001230032323431630631232122209818300.00%4175.00%1599127846.87%597128446.50%31864849.07%11738381118327549274
7Condors21100000431000000000002110000043120.5004812003232343363063123212234112037300.00%9277.78%0599127846.87%597128446.50%31864849.07%11738381118327549274
8Crunch1010000047-31010000047-30000000000000.0004812003232343233063123212227410226116.67%50100.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
9Devils11000000211110000002110000000000021.000235003232343163063123212219112225200.00%10190.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
10Falcons11000000633110000006330000000000021.00061117003232343213063123212223812185120.00%6266.67%0599127846.87%597128446.50%31864849.07%11738381118327549274
11Griffins31101000880110000004132010100047-340.6678132100323234364306312321225814346510220.00%14471.43%0599127846.87%597128446.50%31864849.07%11738381118327549274
12IceCaps30200100612-60000000000030200100612-610.1676121800323234360306312321225217287417211.76%110100.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
13Icehogs21100000642211000006420000000000020.500610160032323434730631232122388213211436.36%70100.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
14Marlies71400101817-94120000137-430200100510-540.286816240032323431373063123212213224851403638.33%39294.87%0599127846.87%597128446.50%31864849.07%11738381118327549274
15Monsters11000000211110000002110000000000021.0002350032323431630631232122241016333133.33%7185.71%0599127846.87%597128446.50%31864849.07%11738381118327549274
16Moose1010000014-3000000000001010000014-300.000123003232343103063123212237112429100.00%12375.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
17Phantoms1010000024-2000000000001010000024-200.0002460032323432530631232122216817400.00%4175.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
18Pirates30300000410-61010000034-12020000016-500.00048120032323435330631232122872457701600.00%15380.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
19Sound Tigers11000000101110000001010000000000021.000123013232343153063123212213101516300.00%40100.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
20Stars1010000013-21010000013-20000000000000.00012300323234314306312321222591626200.00%7185.71%0599127846.87%597128446.50%31864849.07%11738381118327549274
Total47152501312100122-2223109001125152-124516012004970-21390.41510018028002323234395030631232122103829156610122092712.92%2393286.61%1599127846.87%597128446.50%31864849.07%11738381118327549274
22Wild2020000027-52020000027-50000000000000.00023500323234345306312321224371640600.00%8275.00%0599127846.87%597128446.50%31864849.07%11738381118327549274
23Wolf Pack1010000025-31010000025-30000000000000.00023500323234320306312321223541726400.00%6266.67%0599127846.87%597128446.50%31864849.07%11738381118327549274
24Wolves31200000651110000004132020000024-220.333691500323234363306312321227321247519210.53%11190.91%0599127846.87%597128446.50%31864849.07%11738381118327549274
_Since Last GM Reset47152501312100122-2223109001125152-124516012004970-21390.41510018028002323234395030631232122103829156610122092712.92%2393286.61%1599127846.87%597128446.50%31864849.07%11738381118327549274
_Vs Conference37921013127294-221657001123133-221414012004161-20270.36572128200013232343767306312321228032154167921782312.92%1722187.79%1599127846.87%597128446.50%31864849.07%11738381118327549274
_Vs Division1028003012023-3612001011115-44160020098180.400203353003232343203306312321222086112220541921.95%53688.68%0599127846.87%597128446.50%31864849.07%11738381118327549274

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4739L31001802809501038291566101202
All Games
GPWLOTWOTL SOWSOLGFGA
4715251312100122
Home Games
GPWLOTWOTL SOWSOLGFGA
2310901125152
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2451612004970
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2092712.92%2393286.61%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
306312321223232343
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
599127846.87%597128446.50%31864849.07%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11738381118327549274


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-022Marlies2Heat1LXXBoxScore
4 - 2018-10-0527Heat0Wolves1LBoxScore
5 - 2018-10-0635Heat1Admirals2LBoxScore
7 - 2018-10-0849Heat1Comets3LBoxScore
9 - 2018-10-1062Marlies3Heat0LBoxScore
10 - 2018-10-1172Heat3IceCaps4LXBoxScore
13 - 2018-10-1489Americans3Heat2LXBoxScore
15 - 2018-10-16106Heat0Marlies3LBoxScore
17 - 2018-10-18122Icehogs3Heat1LBoxScore
18 - 2018-10-19131Heat3Griffins2WXBoxScore
21 - 2018-10-22150Wild2Heat0LBoxScore
23 - 2018-10-24165Heat1Pirates3LBoxScore
25 - 2018-10-26179Heat2Admirals1WBoxScore
26 - 2018-10-27185Checkers2Heat1LXXBoxScore
30 - 2018-10-31213Marlies1Heat2WBoxScore
32 - 2018-11-02226Heat3Marlies4LBoxScore
33 - 2018-11-03240Falcons3Heat6WBoxScore
36 - 2018-11-06256Heat0Pirates3LBoxScore
38 - 2018-11-08273Monsters1Heat2WBoxScore
41 - 2018-11-11294Heat2IceCaps5LBoxScore
43 - 2018-11-13304Crunch7Heat4LBoxScore
46 - 2018-11-16323Heat1Moose4LBoxScore
47 - 2018-11-17338Marlies1Heat0LBoxScore
49 - 2018-11-19353Heat1Griffins5LBoxScore
51 - 2018-11-21367Barracuda2Heat3WBoxScore
54 - 2018-11-24387Heat1IceCaps3LBoxScore
56 - 2018-11-26399Admirals1Heat2WXXBoxScore
58 - 2018-11-28417Heat0Condors2LBoxScore
59 - 2018-11-29426Wolf Pack5Heat2LBoxScore
63 - 2018-12-03450Heat4Condors1WBoxScore
64 - 2018-12-04460Stars3Heat1LBoxScore
68 - 2018-12-08484Sound Tigers0Heat1WBoxScore
71 - 2018-12-11509Devils1Heat2WBoxScore
75 - 2018-12-15534Wolves1Heat4WBoxScore
77 - 2018-12-17547Heat2Marlies3LXBoxScore
79 - 2018-12-19563Griffins1Heat4WBoxScore
82 - 2018-12-22580Heat5Admirals1WBoxScore
84 - 2018-12-24594Icehogs1Heat5WBoxScore
86 - 2018-12-26610Heat1Checkers4LBoxScore
87 - 2018-12-27617Heat2Phantoms4LBoxScore
89 - 2018-12-29633Heat7Americans5WBoxScore
90 - 2018-12-30642Pirates4Heat3LBoxScore
94 - 2019-01-03665Checkers0Heat3WBoxScore
96 - 2019-01-05684Heat5Bruins1WBoxScore
97 - 2019-01-06695Wild5Heat2LBoxScore
100 - 2019-01-09713Heat2Wolves3LBoxScore
102 - 2019-01-11726Heat2Americans3LBoxScore
103 - 2019-01-12734Comets-Heat-
106 - 2019-01-15756Americans-Heat-
107 - 2019-01-16767Heat-Wild-
110 - 2019-01-19788Rampage-Heat-
111 - 2019-01-20801Heat-Penguins-
114 - 2019-01-23818Heat-Icehogs-
115 - 2019-01-24827Senators-Heat-
118 - 2019-01-27847Comets-Heat-
121 - 2019-01-30869Heat-Rampage-
123 - 2019-02-01879Pirates-Heat-
125 - 2019-02-03896Heat-Comets-
126 - 2019-02-04909Rampage-Heat-
129 - 2019-02-07931Heat-Wolves-
130 - 2019-02-08944Condors-Heat-
133 - 2019-02-11958Heat-Comets-
135 - 2019-02-13971Wolves-Heat-
139 - 2019-02-17997Heat-Reign-
140 - 2019-02-181002Americans-Heat-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221030Icehogs-Heat-
148 - 2019-02-261057IceCaps-Heat-
150 - 2019-02-281067Heat-Bears-
152 - 2019-03-021087Heat-Stars-
153 - 2019-03-031093Gulls-Heat-
155 - 2019-03-051101Heat-Wolves-
158 - 2019-03-081121Heat-Wolves-
159 - 2019-03-091127Heat-Bears-
161 - 2019-03-111140IceCaps-Heat-
163 - 2019-03-131148Heat-Stars-
167 - 2019-03-171172Gulls-Heat-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,458,808$ 1,623,500$ 1,657,900$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 998,760$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 14,044$ 940,948$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201847152501312100122-2223109001125152-124516012004970-213910018028002323234395030631232122103829156610122092712.92%2393286.61%1599127846.87%597128446.50%31864849.07%11738381118327549274
Total Regular Season47152501312100122-2223109001125152-124516012004970-213910018028002323234395030631232122103829156610122092712.92%2393286.61%1599127846.87%597128446.50%31864849.07%11738381118327549274