Monsters

GP: 46 | W: 29 | L: 14 | OTL: 3 | P: 61
GF: 145 | GA: 104 | PP%: 13.56% | PK%: 87.89%
GM : Alan Tsui | Morale : 50 | Team Overall : 58
Next Games #743 vs IceCaps
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Conor ShearyXX100.006341958462668766356274572562646950640
2T.J. TynanX100.006658866258838864806857605444446350600
3Alex BroadhurstX100.007267826067737661765760625744446350590
4Alexandre GrenierX100.007578696878808659254855635244446150590
5Jordan SchroederXX100.006942937462508157695557555361626050580
6Nick MoutreyXX100.007876836376616449614548624644445550540
7Cody GoloubefX100.006872596872626455254152634959595750590
8Ryan Collins (R)X100.008282816382616546253739643744445250570
9Blake Siebenaler (R)X100.008175966675535549253646644444445550570
10Michael PaliottaX100.008177896677545743253140623844445050550
Scratches
TEAM AVERAGE100.00746783677164725545485361464949595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
TEAM AVERAGE0.000000000000000000
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Clark Donatelli73527340525057USA524500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alex BroadhurstMonsters (CBJ)C461216289300511147421816.22%863613.830007220000191160.39%77500000.8822000956
2Jordan SchroederMonsters (CBJ)C/RW4610162698032958941511.24%461313.34000122000002160.71%5600000.8501000693
3Michael PaliottaMonsters (CBJ)D461910193151392122254.55%3966714.51011540000029000.00%000000.3000111156
4Blake SiebenalerMonsters (CBJ)D17235-42204018160012.50%1426415.571121030000016000.00%000000.3800000112
5Ryan CollinsMonsters (CBJ)D8134-2140279100010.00%417421.82123631000013000.00%000000.4600000110
6Nick MoutreyMonsters (CBJ)C/LW30022-1415503423000.00%039013.03000117000000061.29%3100000.1000010002
Team Total or Average193264975122082033929123483811.11%69274714.23246301650000783260.44%86200000.5523121182119
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskBlue Jackets46291430.9042.2627406310310710200.4297460635
Team Total or Average46291430.9042.2627406310310710200.4297460635


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex BroadhurstMonsters (CBJ)C251993-03-06No193 Lbs6 ft0NoNoNo2ELCPro & Farm625,000$0$0$NoLink
Alexandre GrenierMonsters (CBJ)RW271991-09-04No200 Lbs6 ft5NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Blake SiebenalerMonsters (CBJ)D221996-02-26Yes208 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$0$0$NoLink
Cody GoloubefMonsters (CBJ)D291989-11-30No200 Lbs6 ft1NoNoNo3UFAPro & Farm750,000$0$0$NoLink
Conor ShearyMonsters (CBJ)LW/RW261992-06-08No175 Lbs5 ft8NoNoNo1ELCPro & Farm3,500,000$0$0$NoLink
Jordan SchroederMonsters (CBJ)C/RW281990-09-29No184 Lbs5 ft9NoNoNo3UFAPro & Farm950,000$0$0$NoLink
Michael PaliottaMonsters (CBJ)D251993-04-05No207 Lbs6 ft4NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Nick MoutreyMonsters (CBJ)C/LW231995-06-23No218 Lbs6 ft3NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Ryan CollinsMonsters (CBJ)D221996-05-06Yes216 Lbs6 ft5NoNoNo3ELCPro & Farm800,000$0$0$NoLink
T.J. TynanMonsters (CBJ)C261992-02-24No165 Lbs5 ft8NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1025.30197 Lbs6 ft11.801,002,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Alex BroadhurstJordan Schroeder30122
320122
4Jordan SchroederAlex Broadhurst10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Michael Paliotta30122
320122
4Michael Paliotta10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Alex BroadhurstJordan Schroeder40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Michael Paliotta40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Alex Broadhurst40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Michael Paliotta40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Michael Paliotta40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Alex Broadhurst40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Michael Paliotta40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Jordan Schroeder, , Jordan Schroeder,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , Alex Broadhurst, Jordan Schroeder
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000321000000000001100000032121.0003580055414843042440440615258822600.00%4175.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
2Bears21100000550110000003121010000024-220.50057120055414843442440440615612134503133.33%16381.25%0717142150.46%679136049.93%35167951.69%10857771160323526256
3Checkers21100000440211000004400000000000020.5004711005541484694244044061534710331218.33%4250.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
4Comets11000000422110000004220000000000021.0004711005541484204244044061523616194250.00%80100.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
5Crunch321000009901010000025-32200000074340.667917260055414847542440440615881630666116.67%140100.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
6Devils54100000187113210000010642200000081780.8001835530155414841314244044061510336429840820.00%21385.71%0717142150.46%679136049.93%35167951.69%10857771160323526256
7Falcons32100000963321000009630000000000040.6679172600554148481424404406158118345914321.43%16287.50%0717142150.46%679136049.93%35167951.69%10857771160323526256
8Griffins11000000633110000006330000000000021.0006121800554148447424404406151958256116.67%3233.33%0717142150.46%679136049.93%35167951.69%10857771160323526256
9Gulls33000000936220000006151100000032161.000917260155414847642440440615661335581317.69%130100.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
10Heat1010000012-1000000000001010000012-100.00012300554148424424404406151658137114.29%3166.67%0717142150.46%679136049.93%35167951.69%10857771160323526256
11Icehogs1010000012-1000000000001010000012-100.00012300554148420424404406151262010800.00%10190.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
12Marlies11000000431000000000001100000043121.0004812005541484294244044061518101436400.00%60100.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
13Moose412001001113-21000010034-13120000089-130.37511203100554148410842440440615105313411519210.53%16193.75%0717142150.46%679136049.93%35167951.69%10857771160323526256
14Phantoms312000001011-1110000005322020000058-320.33310192900554148485424404406158934538012325.00%17194.12%0717142150.46%679136049.93%35167951.69%10857771160323526256
15Rampage20000110440000000000002000011044030.7504610005541484614244044061553163046900.00%12283.33%0717142150.46%679136049.93%35167951.69%10857771160323526256
16Reign11000000624110000006240000000000021.000612180055414842442440440615281217203133.33%6183.33%0717142150.46%679136049.93%35167951.69%10857771160323526256
17Senators3120000056-1110000003122020000025-320.333510150055414846942440440615552027882414.17%9188.89%0717142150.46%679136049.93%35167951.69%10857771160323526256
18Sound Tigers210000016511000000112-11100000053230.750611170055414845142440440615371222331000.00%10190.00%1717142150.46%679136049.93%35167951.69%10857771160323526256
19Stars21100000734211000007340000000000020.5007121901554148463424404406154113405312216.67%15193.33%0717142150.46%679136049.93%35167951.69%10857771160323526256
Total46281400211145104412417500101835033221190011062548610.663145268413035541484124242440440615109532556010332363213.56%2232787.89%2717142150.46%679136049.93%35167951.69%10857771160323526256
21Wolf Pack44000000191092200000010552200000095481.000193453005541484119424404406151213155881815.56%18477.78%1717142150.46%679136049.93%35167951.69%10857771160323526256
22Wolves11000000422110000004220000000000021.0004812005541484264244044061520523216350.00%20100.00%0717142150.46%679136049.93%35167951.69%10857771160323526256
_Since Last GM Reset46281400211145104412417500101835033221190011062548610.663145268413035541484124242440440615109532556010332363213.56%2232787.89%2717142150.46%679136049.93%35167951.69%10857771160323526256
_Vs Conference332110001011077730171230010158362216970000049418440.667107199306025541484853424404406158342443837551622213.58%1561789.10%2717142150.46%679136049.93%35167951.69%10857771160323526256

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4661W114526841312421095325560103303
All Games
GPWLOTWOTL SOWSOLGFGA
4628140211145104
Home Games
GPWLOTWOTL SOWSOLGFGA
2417501018350
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2211901106254
Last 10 Games
WLOTWOTL SOWSOL
700210
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2363213.56%2232787.89%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
424404406155541484
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
717142150.46%679136049.93%35167951.69%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10857771160323526256


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-021Monsters5Wolf Pack2WBoxScore
4 - 2018-10-0526Sound Tigers2Monsters1LXXBoxScore
6 - 2018-10-0740Monsters2Moose3LBoxScore
8 - 2018-10-0954Devils1Monsters3WBoxScore
11 - 2018-10-1275Falcons2Monsters3WBoxScore
14 - 2018-10-1599Crunch5Monsters2LBoxScore
15 - 2018-10-16108Monsters6Devils1WBoxScore
18 - 2018-10-19128Stars0Monsters6WBoxScore
21 - 2018-10-22154Monsters1Senators3LBoxScore
22 - 2018-10-23162Falcons3Monsters1LBoxScore
26 - 2018-10-27188Devils3Monsters2LBoxScore
28 - 2018-10-29199Monsters3Crunch1WBoxScore
30 - 2018-10-31212Monsters2Phantoms3LBoxScore
32 - 2018-11-02223Checkers2Monsters1LBoxScore
34 - 2018-11-04243Monsters3Americans2WBoxScore
35 - 2018-11-05253Wolves2Monsters4WBoxScore
38 - 2018-11-08273Monsters1Heat2LBoxScore
40 - 2018-11-10286Wolf Pack3Monsters5WBoxScore
43 - 2018-11-13305Monsters3Phantoms5LBoxScore
44 - 2018-11-14315Checkers2Monsters3WBoxScore
47 - 2018-11-17331Monsters1Icehogs2LBoxScore
48 - 2018-11-18347Wolf Pack2Monsters5WBoxScore
50 - 2018-11-20363Monsters2Bears4LBoxScore
52 - 2018-11-22377Stars3Monsters1LBoxScore
56 - 2018-11-26401Monsters1Senators2LBoxScore
57 - 2018-11-27407Comets2Monsters4WBoxScore
61 - 2018-12-01437Gulls1Monsters2WBoxScore
62 - 2018-12-02446Monsters2Moose4LBoxScore
65 - 2018-12-05467Gulls0Monsters4WBoxScore
67 - 2018-12-07479Monsters4Wolf Pack3WBoxScore
69 - 2018-12-09497Falcons1Monsters5WBoxScore
71 - 2018-12-11507Monsters4Crunch3WBoxScore
74 - 2018-12-14527Monsters2Devils0WBoxScore
75 - 2018-12-15536Bears1Monsters3WBoxScore
78 - 2018-12-18560Reign2Monsters6WBoxScore
81 - 2018-12-21578Monsters4Marlies3WBoxScore
84 - 2018-12-24593Moose4Monsters3LXBoxScore
86 - 2018-12-26609Monsters3Gulls2WBoxScore
88 - 2018-12-28621Monsters3Rampage2WXXBoxScore
89 - 2018-12-29629Griffins3Monsters6WBoxScore
92 - 2019-01-01652Monsters5Sound Tigers3WBoxScore
93 - 2019-01-02660Senators1Monsters3WBoxScore
95 - 2019-01-04678Monsters4Moose2WBoxScore
97 - 2019-01-06691Devils2Monsters5WBoxScore
100 - 2019-01-09714Monsters1Rampage2LXBoxScore
101 - 2019-01-10721Phantoms3Monsters5WBoxScore
104 - 2019-01-13743Monsters-IceCaps-
105 - 2019-01-14753Penguins-Monsters-
108 - 2019-01-17775Monsters-Devils-
109 - 2019-01-18782IceCaps-Monsters-
111 - 2019-01-20798Monsters-Wild-
113 - 2019-01-22816Wolves-Monsters-
117 - 2019-01-26840Barracuda-Monsters-
119 - 2019-01-28854Monsters-Condors-
122 - 2019-01-31872Crunch-Monsters-
124 - 2019-02-02888Monsters-Falcons-
126 - 2019-02-04904Barracuda-Monsters-
127 - 2019-02-05919Monsters-Admirals-
129 - 2019-02-07933Crunch-Monsters-
131 - 2019-02-09948Monsters-Checkers-
134 - 2019-02-12964Bruins-Monsters-
136 - 2019-02-14975Monsters-Bears-
139 - 2019-02-17994Pirates-Monsters-
141 - 2019-02-191007Monsters-Wolf Pack-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221026Sound Tigers-Monsters-
146 - 2019-02-241041Monsters-Penguins-
148 - 2019-02-261056Pirates-Monsters-
150 - 2019-02-281070Monsters-Sound Tigers-
152 - 2019-03-021080Monsters-Bruins-
154 - 2019-03-041094Reign-Monsters-
157 - 2019-03-071113Monsters-Barracuda-
158 - 2019-03-081123Sound Tigers-Monsters-
160 - 2019-03-101137Monsters-Bruins-
165 - 2019-03-151154Rampage-Monsters-
166 - 2019-03-161164Monsters-Reign-
167 - 2019-03-171173Monsters-Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
14 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
934,229$ 1,002,500$ 1,002,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 627,980$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 8,891$ 595,697$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20184628140021114510441241750010183503322119001106254861145268413035541484124242440440615109532556010332363213.56%2232787.89%2717142150.46%679136049.93%35167951.69%10857771160323526256
Total Regular Season4628140021114510441241750010183503322119001106254861145268413035541484124242440440615109532556010332363213.56%2232787.89%2717142150.46%679136049.93%35167951.69%10857771160323526256