Monsters

GP: 20 | W: 10 | L: 9 | OTL: 1 | P: 21
GF: 31 | GA: 25 | PP%: 16.96% | PK%: 88.89%
GM : Alan Tsui | Morale : 50 | Team Overall : 58
Next Games vs Wolf Pack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Conor ShearyXX100.006341958462668766356274572562646950640
2T.J. TynanX100.006658866258838864806857605444446350600
3Alex BroadhurstX100.007267826067737661765760625744446350590
4Alexandre GrenierX100.007578696878808659254855635244446150590
5Jordan SchroederXX100.006942937462508157695557555361626050580
6Nick MoutreyXX100.007876836376616449614548624644445550540
7Cody GoloubefX100.006872596872626455254152634959595750590
8Michael PaliottaX100.008177896677545743253140623844445050550
Scratches
1Ryan Collins (R)X92.288282816382616546253739643744445250570
2Blake Siebenaler (R)X94.168175966675535549253646644444445550570
TEAM AVERAGE98.64746783677164725545485361464949595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Oscar Dansk (R)97.00625366766564626866653044446350610
Scratches
TEAM AVERAGE97.0062536676656462686665304444635061
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Clark Donatelli73527340525057USA524500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jordan SchroederMonsters (CBJ)C/RW206391201234500012.00%026413.21000012000002166.67%2700000.6801000410
2Alex BroadhurstMonsters (CBJ)C20257180224222009.09%527213.61000112000060065.31%36900000.5111000122
3Blake SiebenalerMonsters (CBJ)D17235-42204018160012.50%1426415.571121030000016000.00%000000.3800000112
4Michael PaliottaMonsters (CBJ)D20044-323563811000.00%1531915.99011329000017000.00%000000.2500100122
5Ryan CollinsMonsters (CBJ)D8134-2140279100010.00%417421.82123631000013000.00%000000.4600000110
6Nick MoutreyMonsters (CBJ)C/LW200221160332416000.00%026313.20000112000000061.11%1800000.1500000002
Team Total or Average105112031-6855197135125008.80%38155914.85246211280000532165.22%41400000.4012100878
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Oscar DanskMonsters (CBJ)2010910.9042.30120121464780100.3333200311
Team Total or Average2010910.9042.30120121464780100.3333200311


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alex BroadhurstMonsters (CBJ)C251993-03-06No193 Lbs6 ft0NoNoNo2ELCPro & Farm625,000$625,000$Link
Alexandre GrenierMonsters (CBJ)RW271991-09-04No200 Lbs6 ft5NoNoNo1RFAPro & Farm650,000$Link
Blake Siebenaler (Out of Payroll)Monsters (CBJ)D221996-02-26Yes208 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$700,000$Link
Cody GoloubefMonsters (CBJ)D281989-11-30No200 Lbs6 ft1NoNoNo3UFAPro & Farm750,000$750,000$750,000$Link
Conor ShearyMonsters (CBJ)LW/RW261992-06-08No175 Lbs5 ft8NoNoNo1ELCPro & Farm3,500,000$Link
Jordan SchroederMonsters (CBJ)C/RW281990-09-29No184 Lbs5 ft9NoNoNo3UFAPro & Farm950,000$950,000$950,000$Link
Michael PaliottaMonsters (CBJ)D251993-04-05No207 Lbs6 ft4NoNoNo1ELCPro & Farm750,000$Link
Nick MoutreyMonsters (CBJ)C/LW231995-06-23No218 Lbs6 ft3NoNoNo1ELCPro & Farm650,000$Link
Oscar DanskMonsters (CBJ)C241994-02-27Yes195 Lbs6 ft3NoNoNo2ELCPro & Farm675,000$675,000$Link
Ryan Collins (Out of Payroll)Monsters (CBJ)D221996-05-06Yes216 Lbs6 ft5NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
T.J. TynanMonsters (CBJ)C261992-02-24No165 Lbs5 ft8NoNoNo1ELCPro & Farm650,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1125.09196 Lbs6 ft11.82972,727$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Nick MoutreyAlex BroadhurstJordan Schroeder30122
320122
4Jordan SchroederAlex BroadhurstNick Moutrey10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Michael Paliotta30122
320122
4Michael Paliotta10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Nick MoutreyAlex BroadhurstJordan Schroeder40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Michael Paliotta40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Alex Broadhurst40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Michael Paliotta40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Michael Paliotta40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Alex Broadhurst40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Michael Paliotta40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Jordan Schroeder, Nick Moutrey, Jordan Schroeder, Nick Moutrey
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , Alex Broadhurst, Jordan Schroeder
Goalie
#1 : Oscar Dansk, #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000321000000000001100000032121.000358002113231301741751897258822600.00%4175.00%033161853.56%31159052.71%16130353.14%477342496139230112
2Checkers21100000440211000004400000000000020.500471100211323169174175189734710331218.33%4250.00%033161853.56%31159052.71%16130353.14%477342496139230112
3Crunch2110000056-11010000025-31100000031220.5005914002113231461741751897611218434125.00%90100.00%033161853.56%31159052.71%16130353.14%477342496139230112
4Devils321000001156211000005411100000061540.6671121320021132317717417518975921226625832.00%11190.91%033161853.56%31159052.71%16130353.14%477342496139230112
5Falcons2110000045-12110000045-10000000000020.50047110021132314917417518976211264511218.18%12191.67%033161853.56%31159052.71%16130353.14%477342496139230112
6Heat1010000012-1000000000001010000012-100.0001230021132312417417518971658137114.29%3166.67%033161853.56%31159052.71%16130353.14%477342496139230112
7Moose1010000023-1000000000001010000023-100.000246002113231231741751897172829400.00%30100.00%033161853.56%31159052.71%16130353.14%477342496139230112
8Phantoms2020000058-3000000000002020000058-300.00051015002113231541741751897642141486116.67%120100.00%033161853.56%31159052.71%16130353.14%477342496139230112
9Senators1010000013-2000000000001010000013-200.00012300211323127174175189718104341100.00%10100.00%033161853.56%31159052.71%16130353.14%477342496139230112
Since Last GM Reset2010900001574710116400001312569450000026224210.5255710416101211323154217417518974781242244361121916.96%81988.89%033161853.56%31159052.71%16130353.14%477342496139230112
11Sound Tigers1000000112-11000000112-10000000000010.5001230021132312817417518971321011500.00%40100.00%033161853.56%31159052.71%16130353.14%477342496139230112
12Stars11000000606110000006060000000000021.0006101601211323133174175189715220246116.67%50100.00%033161853.56%31159052.71%16130353.14%477342496139230112
Total2010900001574710116400001312569450000026224210.5255710416101211323154217417518974781242244361121916.96%81988.89%033161853.56%31159052.71%16130353.14%477342496139230112
Vs Conference14670000139372733000011719-27340000022184130.4643972111002113231360174175189736897155323751317.33%63592.06%033161853.56%31159052.71%16130353.14%477342496139230112
15Wolf Pack220000001055110000005321100000052341.000101727002113231561741751897741826479111.11%11372.73%033161853.56%31159052.71%16130353.14%477342496139230112
16Wolves11000000422110000004220000000000021.000481200211323126174175189720523216350.00%20100.00%033161853.56%31159052.71%16130353.14%477342496139230112

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2021W15710416154247812422443601
All Games
GPWLOTWOTL SOWSOLGFGA
2010900015747
Home Games
GPWLOTWOTL SOWSOLGFGA
116400013125
Visitor Games
GPWLOTWOTL SOWSOLGFGA
94500002622
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1121916.96%81988.89%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
17417518972113231
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
33161853.56%31159052.71%16130353.14%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
477342496139230112


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-021Monsters5Wolf Pack2WBoxScore
4 - 2018-10-0526Sound Tigers2Monsters1LXXBoxScore
6 - 2018-10-0740Monsters2Moose3LBoxScore
8 - 2018-10-0954Devils1Monsters3WBoxScore
11 - 2018-10-1275Falcons2Monsters3WBoxScore
14 - 2018-10-1599Crunch5Monsters2LBoxScore
15 - 2018-10-16108Monsters6Devils1WBoxScore
18 - 2018-10-19128Stars0Monsters6WBoxScore
21 - 2018-10-22154Monsters1Senators3LBoxScore
22 - 2018-10-23162Falcons3Monsters1LBoxScore
26 - 2018-10-27188Devils3Monsters2LBoxScore
28 - 2018-10-29199Monsters3Crunch1WBoxScore
30 - 2018-10-31212Monsters2Phantoms3LBoxScore
32 - 2018-11-02223Checkers2Monsters1LBoxScore
34 - 2018-11-04243Monsters3Americans2WBoxScore
35 - 2018-11-05253Wolves2Monsters4WBoxScore
38 - 2018-11-08273Monsters1Heat2LBoxScore
40 - 2018-11-10286Wolf Pack3Monsters5WBoxScore
43 - 2018-11-13305Monsters3Phantoms5LBoxScore
44 - 2018-11-14315Checkers2Monsters3WBoxScore
47 - 2018-11-17331Monsters-Icehogs-
48 - 2018-11-18347Wolf Pack-Monsters-
50 - 2018-11-20363Monsters-Bears-
52 - 2018-11-22377Stars-Monsters-
56 - 2018-11-26401Monsters-Senators-
57 - 2018-11-27407Comets-Monsters-
61 - 2018-12-01437Gulls-Monsters-
62 - 2018-12-02446Monsters-Moose-
65 - 2018-12-05467Gulls-Monsters-
67 - 2018-12-07479Monsters-Wolf Pack-
69 - 2018-12-09497Falcons-Monsters-
71 - 2018-12-11507Monsters-Crunch-
74 - 2018-12-14527Monsters-Devils-
75 - 2018-12-15536Bears-Monsters-
78 - 2018-12-18560Reign-Monsters-
81 - 2018-12-21578Monsters-Marlies-
84 - 2018-12-24593Moose-Monsters-
86 - 2018-12-26609Monsters-Gulls-
88 - 2018-12-28621Monsters-Rampage-
89 - 2018-12-29629Griffins-Monsters-
92 - 2019-01-01652Monsters-Sound Tigers-
93 - 2019-01-02660Senators-Monsters-
95 - 2019-01-04678Monsters-Moose-
97 - 2019-01-06691Devils-Monsters-
100 - 2019-01-09714Monsters-Rampage-
101 - 2019-01-10721Phantoms-Monsters-
104 - 2019-01-13743Monsters-IceCaps-
105 - 2019-01-14753Penguins-Monsters-
108 - 2019-01-17775Monsters-Devils-
109 - 2019-01-18782IceCaps-Monsters-
111 - 2019-01-20798Monsters-Wild-
113 - 2019-01-22816Wolves-Monsters-
117 - 2019-01-26840Barracuda-Monsters-
119 - 2019-01-28854Monsters-Condors-
122 - 2019-01-31872Crunch-Monsters-
124 - 2019-02-02888Monsters-Falcons-
126 - 2019-02-04904Barracuda-Monsters-
127 - 2019-02-05919Monsters-Admirals-
129 - 2019-02-07933Crunch-Monsters-
131 - 2019-02-09948Monsters-Checkers-
134 - 2019-02-12964Bruins-Monsters-
136 - 2019-02-14975Monsters-Bears-
139 - 2019-02-17994Pirates-Monsters-
141 - 2019-02-191007Monsters-Wolf Pack-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221026Sound Tigers-Monsters-
146 - 2019-02-241041Monsters-Penguins-
148 - 2019-02-261056Pirates-Monsters-
150 - 2019-02-281070Monsters-Sound Tigers-
152 - 2019-03-021080Monsters-Bruins-
154 - 2019-03-041094Reign-Monsters-
157 - 2019-03-071113Monsters-Barracuda-
158 - 2019-03-081123Sound Tigers-Monsters-
160 - 2019-03-101137Monsters-Bruins-
165 - 2019-03-151154Rampage-Monsters-
166 - 2019-03-161164Monsters-Reign-
167 - 2019-03-171173Monsters-Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,070,000$ 1,070,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
396,578$ 0$ 262,895$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 9,290$ 1,161,250$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182010900001574710116400001312569450000026224215710416101211323154217417518974781242244361121916.96%81988.89%033161853.56%31159052.71%16130353.14%477342496139230112
Total Regular Season2010900001574710116400001312569450000026224215710416101211323154217417518974781242244361121916.96%81988.89%033161853.56%31159052.71%16130353.14%477342496139230112