Griffins

GP: 48 | W: 23 | L: 19 | OTL: 6 | P: 52
GF: 121 | GA: 110 | PP%: 14.29% | PK%: 91.71%
GM : Stephane Boud | Morale : 50 | Team Overall : 59
Next Games #747 vs Marlies
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nicolas DeslauriersX100.009998747178626758555770742565657050640
2Jordan WealXX100.005940947163648573466562607557576650630
3Peter HollandX100.006772907273637157776156777565656450630
4Ivan BarbashevXX100.007843978267629258496064612555556750620
5Kerby RychelX100.007775826775838962505862665947476550620
6John HaydenXX100.009096697384576057466559732550506550620
7Nikita ScherbakXX100.006942907666657766255868582546466750610
8Tanner FritzX100.008244916969638264526159692547476550610
9Sam Anas (R)XX100.006857926257798267806565626244446750610
10Matthew Highmore (R)XX100.006942997066628662315068712545456750600
11Joakim RyanX100.006541957767717961255248692551516150630
12Carl DahlstromX100.006543996184748758256247752545456250630
13Ryan SproulX100.006342887378706461256048642548486050610
14Paul PostmaX100.007343957274556364254747582563635750600
15Lucas Johansen (R)X100.007467906667798750254541613944445550590
16Brennan Menell (R)X100.007466936466798651254345614344445650590
Scratches
1Danick MartelXX100.006457816757768062785366596344446450590
2Tomas Hyka (R)XX100.006741996761626269256559532544446250580
3Lucas WallmarkX100.007743937665558257805059562545456250580
4Adam HelewkaX100.007976876876555460506254665144446150580
5Ryan Gropp (R)X100.007872916472737854504558645544446150570
6Michael Carcone (R)X100.006462706362747955504858575544445950560
7Steve Moses (R)X100.007161956561525160505660625744446250560
8Mitch CallahanXX100.007570856970687349504745614344445450550
9Markus EisenschmidXX100.007267846367616450634748604644445450540
10Tyler Wong (R)X100.006861846261707649504548574644445550530
11Victor Mete (R)X100.005540978165686367255247642555555950610
12Sami Niku (R)X100.006965796765717461255453615044446150590
13Matt TaorminaX100.007365916565687060256441633944445850590
14Philip SamuelssonX100.007572836072778549254141613944445350580
15Jack Dougherty (R)X100.007469846669758346253739603744445250570
16Jacob GravesX100.007472786572535451253751614844445650550
TEAM AVERAGE100.00726088696967755842545463414848615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Eddie Lack100.00515569794951525750503059605250550
Scratches
TEAM AVERAGE100.0051556979495152575050305960525055
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Andrew Brewer47627371454657CAN324650,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joakim RyanGriffins (DET)D48102030-82809178884611.36%38103421.5671219771660000114110.00%000000.5801000551
2Carl DahlstromGriffins (DET)D4891827-81807166638914.29%51104521.7891019531670000123100.00%000000.5201000154
3John HaydenGriffins (DET)C/LW48614202901010980552710.91%864513.440003210000150249.71%68000000.6226110231
4Nikita ScherbakGriffins (DET)LW/RW4891019300754712812.68%164113.37000421000001027.03%3700000.5901000325
5Victor MeteGriffins (DET)D36215170120254328007.14%2652614.62123111600007000.00%000000.6500000333
6Ivan BarbashevGriffins (DET)C/LW48791630015644841914.58%264113.37000121000001043.24%3700000.5015000340
7Kerby RychelGriffins (DET)LW489716-22354660564716.07%14118.5700000000012134.21%3800000.7815010134
8Ryan SproulGriffins (DET)D2951116-22004943440011.36%2160020.7034735104000066000.00%000000.5300000222
9Sam AnasGriffins (DET)C/RW485712-3602053541149.26%54008.3400000000000064.86%37000000.6036000201
10Paul PostmaGriffins (DET)D143360220221140075.00%1219814.1900003000014000.00%000000.6000000201
11Tanner FritzGriffins (DET)C48112-340241928213.57%21573.2800000000060147.85%16300000.2501000100
12Matthew HighmoreGriffins (DET)LW/RW48011-34081519120.00%11412.9400000000000037.50%800000.1401000000
13Jordan WealGriffins (DET)C/LW11000-10011210000.00%0736.7000000000000041.51%5300000.0002000000
Team Total or Average52266116182-2222715488598568287311.62%168651712.4920284818452200003506551.95%138600000.56729120252722
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam HelewkaGriffins (DET)LW231995-07-20No200 Lbs6 ft1NoNoNo2ELCPro & Farm600,000$0$0$NoLink
Brennan MenellGriffins (DET)D211997-05-24Yes183 Lbs5 ft11NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Carl DahlstromGriffins (DET)D231995-01-27No231 Lbs6 ft4NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Danick MartelGriffins (DET)C/LW241994-12-12No162 Lbs5 ft8NoNoNo1ELCPro & Farm800,000$0$0$NoLink
Eddie LackGriffins (DET)G311988-01-05No187 Lbs6 ft4NoNoNo1UFAPro & Farm500,000$0$0$NoLink
Ivan BarbashevGriffins (DET)C/LW231995-12-14No180 Lbs6 ft0NoNoNo1ELCPro & Farm850,000$0$0$NoLink
Jack DoughertyGriffins (DET)D221996-05-24Yes186 Lbs6 ft1NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Jacob GravesGriffins (DET)D231995-03-27No192 Lbs6 ft2NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Joakim RyanGriffins (DET)D251993-06-17No185 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$0$0$NoLink
John HaydenGriffins (DET)C/LW231995-02-14No223 Lbs6 ft3NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Jordan WealGriffins (DET)C/LW261992-04-15No179 Lbs5 ft10NoNoNo4ELCPro & Farm1,750,000$0$0$NoLink
Kerby RychelGriffins (DET)LW241994-10-07No213 Lbs6 ft1NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Lucas JohansenGriffins (DET)D211997-11-16Yes176 Lbs6 ft2NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Lucas WallmarkGriffins (DET)C231995-09-05No176 Lbs6 ft0NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Markus EisenschmidGriffins (DET)C/RW231995-01-22No169 Lbs6 ft0NoNoNo1ELCPro & Farm550,000$0$0$NoLink
Matt TaorminaGriffins (DET)D321986-10-19No188 Lbs5 ft10NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Matthew HighmoreGriffins (DET)LW/RW221996-02-27Yes181 Lbs5 ft11NoNoNo4ELCPro & Farm950,000$0$0$NoLink
Michael CarconeGriffins (DET)LW221996-05-18Yes170 Lbs5 ft10NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Mitch CallahanGriffins (DET)LW/RW271991-08-17No190 Lbs6 ft0NoNoNo1RFAPro & Farm625,000$0$0$NoLink
Nicolas DeslauriersGriffins (DET)LW271991-02-22No216 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Nikita ScherbakGriffins (DET)LW/RW231995-12-29No190 Lbs6 ft2NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Paul PostmaGriffins (DET)D291989-02-21No195 Lbs6 ft3NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Peter HollandGriffins (DET)C281991-01-13No200 Lbs6 ft2NoNoNo2UFAPro & Farm1,200,000$0$0$NoLink
Philip SamuelssonGriffins (DET)D271991-07-25No194 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Ryan GroppGriffins (DET)LW221996-09-16Yes190 Lbs6 ft2NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Ryan SproulGriffins (DET)D261993-01-12No211 Lbs6 ft4NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Sam AnasGriffins (DET)C/RW251993-05-31Yes163 Lbs5 ft8NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Sami NikuGriffins (DET)D221996-10-10Yes176 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Steve MosesGriffins (DET)RW291989-08-09Yes170 Lbs5 ft9NoNoNo1UFAPro & Farm500,000$0$0$NoLink
Tanner FritzGriffins (DET)C271991-08-20No192 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Tomas HykaGriffins (DET)LW/RW251993-03-23Yes160 Lbs5 ft11NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Tyler WongGriffins (DET)LW221996-02-28Yes172 Lbs5 ft9NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Victor MeteGriffins (DET)D201998-06-07Yes174 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3324.55187 Lbs6 ft01.91749,242$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Ivan BarbashevJohn HaydenNikita Scherbak30122
3Kerby RychelSam Anas20122
4Matthew HighmoreTanner Fritz10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanCarl Dahlstrom40122
230122
320122
4Joakim RyanCarl Dahlstrom10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Ivan BarbashevJohn HaydenNikita Scherbak40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanCarl Dahlstrom60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2John Hayden40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanCarl Dahlstrom60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Joakim RyanCarl Dahlstrom60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2John Hayden40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanCarl Dahlstrom60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Joakim RyanCarl Dahlstrom
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joakim RyanCarl Dahlstrom
Extra Forwards
Normal PowerPlayPenalty Kill
Kerby Rychel, Sam Anas, Tanner FritzKerby Rychel, Sam AnasTanner Fritz
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , John Hayden, Ivan Barbashev
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals32000001752220000005231000000123-150.83371219013643391169337377361555716344717423.53%17194.12%0676134750.19%606124748.60%33965152.07%12509061106330561290
2Americans10000010431100000104310000000000021.00046100036433911293373773615538711285120.00%3166.67%0676134750.19%606124748.60%33965152.07%12509061106330561290
3Bears11000000615110000006150000000000021.00061218003643391137337377361551454205240.00%20100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
4Comets1010000012-1000000000001010000012-100.00011200364339111733737736155147619600.00%30100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
5Condors31100010550100000102112110000034-140.66758130036433911413373773615550103850800.00%18194.44%0676134750.19%606124748.60%33965152.07%12509061106330561290
6Gulls11000000505110000005050000000000021.0005914013643391125337377361551222217114.29%10100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
7Heat31100100880210001007431010000014-330.50081422003643391158337377361556420265114428.57%10280.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
8IceCaps30300000312-920200000310-71010000002-200.00036900364339116033737736155701416571119.09%70100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
9Icehogs3110010078-11000010045-12110000033030.50071421003643391162337377361556426526313215.38%16287.50%0676134750.19%606124748.60%33965152.07%12509061106330561290
10Marlies2010001078-12010001078-10000000000020.500712190036433911483373773615545162444800.00%90100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
11Monsters1010000036-3000000000001010000036-300.0003580036433911193373773615547714193266.67%6183.33%0676134750.19%606124748.60%33965152.07%12509061106330561290
12Penguins211000006421010000034-11100000030320.50061117013643391137337377361555522104213323.08%50100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
13Phantoms11000000211000000000001100000021121.0002460036433911283373773615519641510110.00%20100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
14Pirates11000000413000000000001100000041321.000481200364339113333737736155248631400.00%30100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
15Rampage422000007612020000025-32200000051440.500713200136433911107337377361558219347719210.53%150100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
16Senators1010000002-21010000002-20000000000000.0000000036433911213373773615591821500.00%30100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
17Sound Tigers310000028801000000134-12100000154140.66781523003643391196337377361554414184924312.50%7271.43%0676134750.19%606124748.60%33965152.07%12509061106330561290
18Stars21100000440110000002111010000023-120.50047110036433911453373773615540101452900.00%70100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
Total4820190023412111011249800232696272411110000252484520.542121218339043643391110923373773615510232744239442383414.29%1811591.71%0676134750.19%606124748.60%33965152.07%12509061106330561290
20Wild32100000862211000005501100000031240.66781422003643391169337377361556112284513430.77%12375.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
21Wolf Pack11000000312110000003120000000000021.000369003643391121337377361552571028600.00%50100.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
22Wolves41200001911-21000000134-13120000067-130.37591524003643391188337377361551012230851400.00%15193.33%0676134750.19%606124748.60%33965152.07%12509061106330561290
23Wolves422000001486110000005233120000096340.500142640003643391182337377361558823348024416.67%15193.33%0676134750.19%606124748.60%33965152.07%12509061106330561290
_Since Last GM Reset4820190023412111011249800232696272411110000252484520.542121218339043643391110923373773615510232744239442383414.29%1811591.71%0676134750.19%606124748.60%33965152.07%12509061106330561290
_Vs Conference37141600232888711866002314950-1198100000139372380.514881562440236433911808337377361557982103537291652213.33%1501292.00%0676134750.19%606124748.60%33965152.07%12509061106330561290
_Vs Division1287001023323105320010119712755000011416-2190.7923358910136433911223337377361552286210622159915.25%47491.49%0676134750.19%606124748.60%33965152.07%12509061106330561290

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4852L11212183391092102327442394404
All Games
GPWLOTWOTL SOWSOLGFGA
4820190234121110
Home Games
GPWLOTWOTL SOWSOLGFGA
249802326962
Visitor Games
GPWLOTWOTL SOWSOLGFGA
24111100025248
Last 10 Games
WLOTWOTL SOWSOL
260011
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2383414.29%1811591.71%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
3373773615536433911
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
676134750.19%606124748.60%33965152.07%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12509061106330561290


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0417Icehogs5Griffins4LXBoxScore
5 - 2018-10-0634Rampage3Griffins1LBoxScore
8 - 2018-10-0957Griffins2Wolves3LBoxScore
9 - 2018-10-1064Admirals0Griffins2WBoxScore
11 - 2018-10-1277Griffins2Admirals3LXXBoxScore
14 - 2018-10-1598Wolves2Griffins5WBoxScore
16 - 2018-10-17115Griffins1Wolves2LBoxScore
18 - 2018-10-19131Heat3Griffins2LXBoxScore
20 - 2018-10-21144Griffins2Wolves3LBoxScore
22 - 2018-10-23158Stars1Griffins2WBoxScore
25 - 2018-10-26180Griffins1Wolves2LBoxScore
27 - 2018-10-28192Wild4Griffins0LBoxScore
29 - 2018-10-30206Griffins2Condors1WBoxScore
31 - 2018-11-01222IceCaps6Griffins1LBoxScore
32 - 2018-11-02228Griffins3Icehogs2WBoxScore
35 - 2018-11-05249Griffins1Rampage0WBoxScore
36 - 2018-11-06262Americans3Griffins4WXXBoxScore
40 - 2018-11-10283Wild1Griffins5WBoxScore
42 - 2018-11-12296Griffins1Condors3LBoxScore
44 - 2018-11-14312Griffins4Sound Tigers2WBoxScore
46 - 2018-11-16324Gulls0Griffins5WBoxScore
48 - 2018-11-18343Griffins4Rampage1WBoxScore
49 - 2018-11-19353Heat1Griffins5WBoxScore
52 - 2018-11-22376Condors1Griffins2WXXBoxScore
56 - 2018-11-26397Griffins3Penguins0WBoxScore
57 - 2018-11-27408Bears1Griffins6WBoxScore
60 - 2018-11-30429Griffins0IceCaps2LBoxScore
62 - 2018-12-02441Admirals2Griffins3WBoxScore
64 - 2018-12-04456Griffins2Phantoms1WBoxScore
66 - 2018-12-06472Penguins4Griffins3LBoxScore
68 - 2018-12-08489Griffins1Comets2LBoxScore
70 - 2018-12-10501Griffins1Sound Tigers2LXXBoxScore
72 - 2018-12-12511IceCaps4Griffins2LBoxScore
75 - 2018-12-15533Wolf Pack1Griffins3WBoxScore
76 - 2018-12-16543Griffins3Wolves2WBoxScore
79 - 2018-12-19563Griffins1Heat4LBoxScore
80 - 2018-12-20572Wolves4Griffins3LXXBoxScore
83 - 2018-12-23589Griffins6Wolves1WBoxScore
85 - 2018-12-25599Senators2Griffins0LBoxScore
87 - 2018-12-27612Griffins3Wild1WBoxScore
89 - 2018-12-29629Griffins3Monsters6LBoxScore
90 - 2018-12-30639Sound Tigers4Griffins3LXXBoxScore
93 - 2019-01-02658Griffins2Stars3LBoxScore
94 - 2019-01-03671Marlies3Griffins4WXXBoxScore
97 - 2019-01-06692Marlies5Griffins3LBoxScore
99 - 2019-01-08705Griffins0Icehogs1LBoxScore
101 - 2019-01-10719Griffins4Pirates1WBoxScore
102 - 2019-01-11733Rampage2Griffins1LBoxScore
104 - 2019-01-13747Griffins-Marlies-
106 - 2019-01-15761Devils-Griffins-
109 - 2019-01-18780Griffins-Admirals-
111 - 2019-01-20794Comets-Griffins-
112 - 2019-01-21809Griffins-Admirals-
115 - 2019-01-24823Pirates-Griffins-
118 - 2019-01-27845Checkers-Griffins-
120 - 2019-01-29858Griffins-Moose-
123 - 2019-02-01884Rampage-Griffins-
126 - 2019-02-04905Reign-Griffins-
127 - 2019-02-05914Griffins-Americans-
129 - 2019-02-07935Wolves-Griffins-
134 - 2019-02-12966Crunch-Griffins-
137 - 2019-02-15980Griffins-Falcons-
139 - 2019-02-17995Icehogs-Griffins-
141 - 2019-02-191011Griffins-Checkers-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221027Wolves-Griffins-
147 - 2019-02-251047Griffins-Barracuda-
148 - 2019-02-261058Bruins-Griffins-
151 - 2019-03-011072Griffins-Americans-
153 - 2019-03-031088Comets-Griffins-
154 - 2019-03-041099Griffins-Pirates-
155 - 2019-03-051104Griffins-Checkers-
158 - 2019-03-081120Griffins-Wolf Pack-
160 - 2019-03-101130Icehogs-Griffins-
163 - 2019-03-131151Griffins-Bears-
166 - 2019-03-161163Stars-Griffins-
167 - 2019-03-171169Griffins-Barracuda-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
14 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,875,624$ 2,472,500$ 2,414,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,479,852$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 18,476$ 1,237,892$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018482019002341211101124980023269627241111000025248452121218339043643391110923373773615510232744239442383414.29%1811591.71%0676134750.19%606124748.60%33965152.07%12509061106330561290
Total Regular Season482019002341211101124980023269627241111000025248452121218339043643391110923373773615510232744239442383414.29%1811591.71%0676134750.19%606124748.60%33965152.07%12509061106330561290