Icehogs

GP: 20 | W: 9 | L: 10 | OTL: 1 | P: 19
GF: 22 | GA: 26 | PP%: 17.02% | PK%: 86.32%
GM : Mike Parliament | Morale : 50 | Team Overall : 59
Next Games vs Griffins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Cedric PaquetteXXX99.008556798273577459765759722564676550630
2Ryan HaggertyX99.007773866873666766506365666244446650620
3Jakub VranaXX100.006341947767636464496571522556566750610
4Morgan KlimchukX100.007167816967768062505862625944446450600
5Cody McLeodXX100.009299406681487152255655627578805950590
6Riley BarberX100.007270776670666762505663636044446350590
7Luke Johnson (R)X100.007270766770818856705057615444446050590
8Adam TambelliniX100.007264916464778357715159615644446150580
9Matheson Iacopelli (R)XX100.008176936776636655694758655544446150580
10Brett LernoutX100.009647897478709055254647732545456150650
11Klas DahlbeckX100.008766816978706054255148692561616050630
12Ville PokkaX100.008076887176808753254943644144445850620
13Ryan GravesX100.008083746483829146253641633944445450600
14Brandon Crawley (R)X100.008075916675687253254052644944445950590
15Jeff SchultzX100.008988906588565946253740673844445350580
16Alexandre Carrier (R)X100.006863796863818951254741583944445550580
Scratches
1Dennis RasmussenXX39.477644906977537360526056772559596450620
2Keegan Kolesar (R)X100.007881706581616450504847634544445450550
3Vince Pedrie (R)X100.007370796270646948253941603944445250560
4Ben MarshallX100.006358756558505246253839543744444950510
TEAM AVERAGE96.87786881687367735542505264444949595059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Al Montoya100.00625052787549545961614361615950600
2Jake Paterson (R)100.00515670664951505649493044445150520
Scratches
TEAM AVERAGE100.0057536172625052585555375353555056
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ted Dent30303030303030CAN441800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jakub VranaIcehogs (CHI)LW/RW203811-1100153736008.33%228414.20112116000060243.48%2300000.7700000130
2Morgan KlimchukIcehogs (CHI)LW20268-220132150013.33%31919.5700009000070057.14%1400000.8400000101
3Cody McLeodIcehogs (CHI)LW/RW20347-11804518200015.00%01728.6100017000001045.45%1100000.8101000100
4Dennis RasmussenIcehogs (CHI)C/LW1542611602423300013.33%419212.8201103000000057.14%700000.6200000012
5Klas DahlbeckIcehogs (CHI)D10145033526615006.67%621021.011011133000018100.00%000000.4800100011
6Luke JohnsonIcehogs (CHI)C20044-20022912000.00%21899.45000110000020062.37%19400000.4200000001
7Jeff SchultzIcehogs (CHI)D2021301403613130015.38%51939.6800051600005100.00%000000.3100000311
8Ryan GravesIcehogs (CHI)D20033-11535521118000.00%2738919.48011535000031000.00%000000.1500010000
9Adam TambelliniIcehogs (CHI)C2011210021280012.50%0804.0300002000020053.19%9400000.5000000001
10Riley BarberIcehogs (CHI)RW20022120999000.00%0793.9700003000000033.33%300000.5000000000
11Cedric PaquetteIcehogs (CHI)C/LW/RW2011-200794000.00%04522.5801117000090058.62%5800000.4400000000
12Brett LernoutIcehogs (CHI)D2101-240124100100.00%34522.821011700006000.00%000000.4400000000
13Matheson IacopelliIcehogs (CHI)LW/RW20101011581090011.11%0793.9900001000020087.50%800000.2500100001
14Brandon CrawleyIcehogs (CHI)D5000120441000.00%16713.580001900007000.00%000000.0000000000
15Ryan HaggertyIcehogs (CHI)RW2000-200336000.00%04422.48000180001100050.00%200000.0000000000
16Alexandre CarrierIcehogs (CHI)D2000000311000.00%02914.870000000004000.00%000000.0000000000
17Ville PokkaIcehogs (CHI)D2000-220253000.00%24221.230002900008000.00%000000.0000000000
Team Total or Average220183654-2116715251226201008.96%55233710.633473018400011233258.21%41400000.4601210668
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake PatersonIcehogs (CHI)189810.8862.63100501443860000.0002182310
2Al MontoyaIcehogs (CHI)60200.9092.11199007770000.0000218000
Team Total or Average2491010.8902.54120501514630000.00022020310


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam TambelliniIcehogs (CHI)C241994-10-31No195 Lbs6 ft4NoNoNo1ELCPro & Farm750,000$Link
Al MontoyaIcehogs (CHI)D331985-02-12No209 Lbs6 ft2NoNoNo1UFAPro & Farm1,200,000$Link
Alexandre CarrierIcehogs (CHI)D221996-10-08Yes174 Lbs5 ft11NoNoNo2ELCPro & Farm600,000$600,000$Link
Ben MarshallIcehogs (CHI)D261992-08-30No161 Lbs5 ft9NoNoNo1ELCPro & Farm575,000$Link
Brandon CrawleyIcehogs (CHI)D211997-02-02Yes203 Lbs6 ft2NoNoNo3ELCPro & Farm600,000$600,000$600,000$Link
Brett LernoutIcehogs (CHI)D231995-09-23No213 Lbs6 ft4NoNoNo1ELCPro & Farm750,000$Link
Cedric PaquetteIcehogs (CHI)C/LW/RW251993-08-13No198 Lbs6 ft1NoNoNo1ELCPro & Farm950,000$Link
Cody McLeodIcehogs (CHI)LW/RW341984-06-26No210 Lbs6 ft2NoNoNo1UFAPro & Farm750,000$Link
Dennis Rasmussen (Out of Payroll)Icehogs (CHI)C/LW281990-07-03No205 Lbs6 ft3NoNoNo1UFAPro & Farm850,000$Link
Jake PatersonIcehogs (CHI)G241994-05-02Yes176 Lbs6 ft1NoNoNo1ELCPro & Farm750,000$Link
Jakub VranaIcehogs (CHI)LW/RW221996-02-28No195 Lbs6 ft0NoNoNo1ELCPro & Farm950,000$Link
Jeff SchultzIcehogs (CHI)D321986-02-25No217 Lbs6 ft6NoNoNo1UFAPro & Farm790,000$Link
Keegan KolesarIcehogs (CHI)RW211997-04-08Yes227 Lbs6 ft2NoNoNo3ELCPro & Farm750,000$750,000$750,000$Link
Klas DahlbeckIcehogs (CHI)D271991-07-06No207 Lbs6 ft3NoNoNo4RFAPro & Farm900,000$900,000$900,000$900,000$Link
Luke JohnsonIcehogs (CHI)C241994-09-18Yes198 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$500,000$Link
Matheson IacopelliIcehogs (CHI)LW/RW241994-05-15Yes207 Lbs6 ft2NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Morgan KlimchukIcehogs (CHI)LW231995-03-01No185 Lbs6 ft0NoNoNo1ELCPro & Farm900,000$Link
Riley BarberIcehogs (CHI)RW241994-02-07No193 Lbs6 ft0NoNoNo1ELCPro & Farm500,000$Link
Ryan GravesIcehogs (CHI)D231995-05-20No216 Lbs6 ft5NoNoNo1ELCPro & Farm600,000$Link
Ryan HaggertyIcehogs (CHI)RW251993-03-03No201 Lbs6 ft0NoNoNo2ELCPro & Farm1,250,000$1,250,000$Link
Ville PokkaIcehogs (CHI)D241994-06-02No214 Lbs6 ft0NoNoNo4ELCPro & Farm750,000$750,000$750,000$750,000$Link
Vince PedrieIcehogs (CHI)D241994-01-17Yes194 Lbs6 ft0NoNoNo3ELCPro & Farm750,000$750,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2225.14200 Lbs6 ft11.77777,955$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakub VranaCedric PaquetteRyan Haggerty40122
2Morgan KlimchukLuke JohnsonCody McLeod30122
3Matheson IacopelliAdam TambelliniRiley Barber20122
4Ryan HaggertyCedric PaquetteJakub Vrana10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brett LernoutKlas Dahlbeck40122
2Ville PokkaRyan Graves30122
3Brandon CrawleyAlexandre Carrier20122
4Jeff SchultzBrett Lernout10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jakub VranaCedric PaquetteRyan Haggerty60122
2Morgan KlimchukLuke JohnsonCody McLeod40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Brett LernoutKlas Dahlbeck60122
2Ville PokkaRyan Graves40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Cedric PaquetteRyan Haggerty60122
2Jakub VranaMorgan Klimchuk40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Brett LernoutKlas Dahlbeck60122
2Ville PokkaRyan Graves40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Cedric Paquette60122Brett LernoutKlas Dahlbeck60122
2Ryan Haggerty40122Ville PokkaRyan Graves40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cedric PaquetteRyan Haggerty60122
2Jakub VranaMorgan Klimchuk40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Brett LernoutKlas Dahlbeck60122
2Ville PokkaRyan Graves40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jakub VranaCedric PaquetteRyan HaggertyBrett LernoutKlas Dahlbeck
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jakub VranaCedric PaquetteRyan HaggertyBrett LernoutKlas Dahlbeck
Extra Forwards
Normal PowerPlayPenalty Kill
Riley Barber, Adam Tambellini, Matheson IacopelliRiley Barber, Adam TambelliniMatheson Iacopelli
Extra Defensemen
Normal PowerPlayPenalty Kill
Brandon Crawley, Alexandre Carrier, Jeff SchultzBrandon CrawleyAlexandre Carrier, Jeff Schultz
Penalty Shots
Cedric Paquette, Ryan Haggerty, Jakub Vrana, Morgan Klimchuk, Luke Johnson
Goalie
#1 : Al Montoya, #2 : Jake Paterson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000312110000003120000000000021.000369001210221241631311578946254125.00%3166.67%027855350.27%28454152.50%13430244.37%477337495141234112
2Barracuda1010000024-2000000000001010000024-200.00024600121022130163131157823210186116.67%5180.00%027855350.27%28454152.50%13430244.37%477337495141234112
3Bruins11000000202000000000001100000020221.0002460112102211716313115781838126233.33%40100.00%027855350.27%28454152.50%13430244.37%477337495141234112
4Checkers11000000211110000002110000000000021.000246001210221171631311578172828500.00%40100.00%027855350.27%28454152.50%13430244.37%477337495141234112
5Griffins201010007701010000023-11000100054120.500713200012102214816313115784311214110220.00%8275.00%027855350.27%28454152.50%13430244.37%477337495141234112
6Heat11000000312000000000001100000031221.00035800121022122163131157830121916300.00%7185.71%027855350.27%28454152.50%13430244.37%477337495141234112
7IceCaps1010000025-31010000025-30000000000000.0002460012102212116313115782336172150.00%3233.33%027855350.27%28454152.50%13430244.37%477337495141234112
8Marlies11000000312000000000001100000031221.00036900121022125163131157824310175120.00%40100.00%027855350.27%28454152.50%13430244.37%477337495141234112
9Moose1000000123-11000000123-10000000000010.50023500121022130163131157828136221100.00%3166.67%027855350.27%28454152.50%13430244.37%477337495141234112
10Penguins1010000013-21010000013-20000000000000.0001230012102212116313115781939138112.50%20100.00%027855350.27%28454152.50%13430244.37%477337495141234112
11Pirates1010000013-2000000000001010000013-200.0001230012102211816313115782791628200.00%8187.50%027855350.27%28454152.50%13430244.37%477337495141234112
12Rampage2110000045-1000000000002110000045-120.5004711001210221401631311578338224310220.00%11281.82%127855350.27%28454152.50%13430244.37%477337495141234112
Since Last GM Reset20810010014552-71045000012226-41045010002326-3190.47545861310112102214571631311578463105211424941617.02%951386.32%127855350.27%28454152.50%13430244.37%477337495141234112
14Stars1010000003-31010000003-30000000000000.0000000012102212216313115783041420500.00%7185.71%027855350.27%28454152.50%13430244.37%477337495141234112
Total20810010014552-71045000012226-41045010002326-3190.47545861310112102214571631311578463105211424941617.02%951386.32%127855350.27%28454152.50%13430244.37%477337495141234112
Vs Conference1678010003842-4844000001920-1834010001922-3160.5003873111001210221359163131157837584178359631219.05%811186.42%127855350.27%28454152.50%13430244.37%477337495141234112
Vs Division4440100010912320000054121201000550101.25010192900121022199163131157812025499013215.38%22290.91%027855350.27%28454152.50%13430244.37%477337495141234112
18Wild1010000004-4000000000001010000004-400.0000000012102212016313115783141423400.00%5180.00%027855350.27%28454152.50%13430244.37%477337495141234112
19Wolves21100000871110000005321010000034-120.50081624001210221551631311578411322459444.44%110100.00%027855350.27%28454152.50%13430244.37%477337495141234112
20Wolves21100000541211000005410000000000020.50051015001210221471631311578671120564125.00%100100.00%027855350.27%28454152.50%13430244.37%477337495141234112

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2019L2458613145746310521142401
All Games
GPWLOTWOTL SOWSOLGFGA
2081010014552
Home Games
GPWLOTWOTL SOWSOLGFGA
104500012226
Visitor Games
GPWLOTWOTL SOWSOLGFGA
104510002326
Last 10 Games
WLOTWOTL SOWSOL
450001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
941617.02%951386.32%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
16313115781210221
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
27855350.27%28454152.50%13430244.37%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
477337495141234112


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0417Icehogs5Griffins4WXBoxScore
4 - 2018-10-0528Stars3Icehogs0LBoxScore
7 - 2018-10-0847Admirals1Icehogs3WBoxScore
10 - 2018-10-1167Wolves3Icehogs2LBoxScore
12 - 2018-10-1381Icehogs2Rampage4LBoxScore
14 - 2018-10-1597Checkers1Icehogs2WBoxScore
16 - 2018-10-17116Icehogs0Wild4LBoxScore
17 - 2018-10-18122Icehogs3Heat1WBoxScore
19 - 2018-10-20138Wolves3Icehogs5WBoxScore
21 - 2018-10-22151Icehogs3Wolves4LBoxScore
23 - 2018-10-24170Wolves1Icehogs3WBoxScore
26 - 2018-10-27189Icehogs2Rampage1WBoxScore
27 - 2018-10-28198Icehogs3Marlies1WBoxScore
29 - 2018-10-30208IceCaps5Icehogs2LBoxScore
32 - 2018-11-02228Griffins3Icehogs2LBoxScore
34 - 2018-11-04245Icehogs2Barracuda4LBoxScore
36 - 2018-11-06255Icehogs2Bruins0WBoxScore
38 - 2018-11-08270Moose3Icehogs2LXXBoxScore
40 - 2018-11-10288Icehogs1Pirates3LBoxScore
42 - 2018-11-12298Penguins3Icehogs1LBoxScore
45 - 2018-11-15318Icehogs-Marlies-
47 - 2018-11-17331Monsters-Icehogs-
49 - 2018-11-19349Wolves-Icehogs-
51 - 2018-11-21365Icehogs-Falcons-
53 - 2018-11-23379Icehogs-Bruins-
55 - 2018-11-25393Bears-Icehogs-
57 - 2018-11-27410Icehogs-Reign-
59 - 2018-11-29423Icehogs-Stars-
60 - 2018-11-30431Reign-Icehogs-
63 - 2018-12-03453Wild-Icehogs-
67 - 2018-12-07476Devils-Icehogs-
70 - 2018-12-10503IceCaps-Icehogs-
72 - 2018-12-12516Icehogs-Wolf Pack-
75 - 2018-12-15532Marlies-Icehogs-
78 - 2018-12-18559Checkers-Icehogs-
80 - 2018-12-20569Icehogs-Americans-
82 - 2018-12-22583Icehogs-Wolves-
84 - 2018-12-24594Icehogs-Heat-
86 - 2018-12-26605Sound Tigers-Icehogs-
88 - 2018-12-28626Crunch-Icehogs-
90 - 2018-12-30637Icehogs-Checkers-
92 - 2019-01-01653Americans-Icehogs-
93 - 2019-01-02663Icehogs-Wolves-
96 - 2019-01-05679Icehogs-Phantoms-
98 - 2019-01-07696Icehogs-Americans-
99 - 2019-01-08705Griffins-Icehogs-
102 - 2019-01-11727Wolves-Icehogs-
104 - 2019-01-13748Gulls-Icehogs-
106 - 2019-01-15760Icehogs-Checkers-
108 - 2019-01-17776Icehogs-Rampage-
109 - 2019-01-18786Condors-Icehogs-
112 - 2019-01-21804Icehogs-Comets-
114 - 2019-01-23818Heat-Icehogs-
117 - 2019-01-26842Pirates-Icehogs-
120 - 2019-01-29861Icehogs-IceCaps-
122 - 2019-01-31874Comets-Icehogs-
124 - 2019-02-02894Icehogs-Wild-
125 - 2019-02-03898Icehogs-Wolves-
127 - 2019-02-05913Senators-Icehogs-
129 - 2019-02-07937Senators-Icehogs-
133 - 2019-02-11960Icehogs-Wolves-
135 - 2019-02-13969Pirates-Icehogs-
137 - 2019-02-15978Icehogs-Admirals-
139 - 2019-02-17995Icehogs-Griffins-
141 - 2019-02-191006Admirals-Icehogs-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221030Icehogs-Heat-
145 - 2019-02-231035Admirals-Icehogs-
147 - 2019-02-251048Icehogs-Admirals-
149 - 2019-02-271065Rampage-Icehogs-
152 - 2019-03-021082Icehogs-Comets-
153 - 2019-03-031091Icehogs-Condors-
156 - 2019-03-061106Rampage-Icehogs-
158 - 2019-03-081119Icehogs-Condors-
160 - 2019-03-101130Icehogs-Griffins-
162 - 2019-03-121144Stars-Icehogs-
167 - 2019-03-171175Stars-Icehogs-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,626,500$ 1,566,778$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
643,085$ 0$ 433,014$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 14,358$ 1,794,750$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201820810010014552-71045000012226-41045010002326-31945861310112102214571631311578463105211424941617.02%951386.32%127855350.27%28454152.50%13430244.37%477337495141234112
Total Regular Season20810010014552-71045000012226-41045010002326-31945861310112102214571631311578463105211424941617.02%951386.32%127855350.27%28454152.50%13430244.37%477337495141234112