Crunch

GP: 48 | W: 28 | L: 17 | OTL: 3 | P: 59
GF: 136 | GA: 128 | PP%: 12.32% | PK%: 84.36%
GM : Dannick Payment | Morale : 50 | Team Overall : 60
Next Games #737 vs Barracuda
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Antoine RousselX100.007992548175638462566358767569706650660
2Sean KuralyXX100.008459847277628660776058792555556650640
3Brendan LemieuxX100.007980766580747666506266676344446850630
4Chris ThorburnXX100.008599676990477459546155692580816250620
5Jordan NolanXX100.008376727583567557315657642567696250610
6Mitchell Stephens (R)X100.007671896571747762785763656044446650610
7Nicolas Roy (R)X100.008078846878747859745954665144446250600
8Liam O'BrienX100.008279886879778356504662665945456450600
9Nicholas BaptisteXX100.006542877874568864325662612548486450600
10Will Butcher (R)X99.006141968668698182257448572559596350650
11Jakub JerabekX100.007743947769697360255348662550506150620
12Rasmus AnderssonX100.005942877977687571254047622545455850610
13Kyle Wood (R)X100.008381896881687351254741653944445650600
Scratches
1Tyler BertuzziX100.007655777166687669297768672549497150640
2Ryan ReavesX100.009593687382509758455857642571736350630
3Mathieu Joseph (R)XX100.007065826665757864506658625544446350600
4Andy AndreoffXX100.008299707379556057436158592560616150590
5Trent Frederic (R)X100.008280866580535162785763686044446450590
6Dennis Yan (R)X100.007368866568697258505161625844446250580
7Joe ColborneXXX100.008684906684383553664754675144445850550
8Mason Marchment (R)X100.008077885977575854505747654544445750550
9Graham Knott (R)X100.007974896274687447504346624444445450540
10Ben HarpurX100.008259857082658257254247822548486150650
11Madison BoweyX100.007343867271646457255947632549496050600
12Luke WitkowskiX100.008399427178456152445048602555565650580
13Dan Renouf (R)X100.007476686676778646253739603744445250580
TEAM AVERAGE99.96787180707663745945555466395152625061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Thomas Greiss99.00586968806254436160588863645950600
2Samuel Montembeault (R)100.00537088784956505851513044445550560
Scratches
1Adam Wilcox100.00556683755356526053533044445650560
TEAM AVERAGE99.6755688078555548605554495051575057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
D.J. Smith47627371454657CAN414700,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mitchell StephensCrunch (TAM)C482217395631575153153102414.38%875415.7141526113000005161.57%73900011.0301011816
2Will ButcherCrunch (TAM)D4813233-1220657641362.44%38100320.91178281160000107000.00%000000.6600000433
3Ryan ReavesCrunch (TAM)RW3415823-1741010865970015.46%360117.702461796000003337.78%4500010.7600011551
4Nicholas BaptisteCrunch (TAM)C/RW4891019-34025567311512.33%24359.0700000000002138.00%50000000.8700000145
5Brendan LemieuxCrunch (TAM)LW48117181526057435741119.30%102675.5700012000001247.37%1900001.3512000353
6Tyler BertuzziCrunch (TAM)LW389817-23355942570015.79%63619.50000000001145052.17%2300000.9411001231
7Rasmus AnderssonCrunch (TAM)D483912-4402524261311.54%1853711.200004400000010.00%000000.4500000301
8Ben HarpurCrunch (TAM)D2244803607019260015.38%2341618.922021537000045000.00%000000.3800000122
9Kyle WoodCrunch (TAM)D48077-5775109287010.00%2153911.2300000000016000.00%000000.2600001010
10Liam O'BrienCrunch (TAM)LW48145-24075100010.00%0440.94145626000001050.00%2600002.2201000013
11Mathieu JosephCrunch (TAM)LW/RW20044-3120121011000.00%11849.2500000000000042.86%1400000.4300000000
Team Total or Average45075110185-135535612521558196013.44%130514511.4410162697396000118417851.39%136600020.7225024272525
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thomas GreissCrunch (TAM)48281730.8782.7227340112410160000.6258480411
2Samuel MontembeaultCrunch (TAM)60000.9521.08167003630000.0000048000
Team Total or Average54281730.8822.6329020112710790000.62584848411


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam WilcoxCrunch (TAM)G241994-04-25No187 Lbs6 ft0NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Andy AndreoffCrunch (TAM)C/LW271991-05-16No210 Lbs6 ft1NoNoNo4RFAPro & Farm677,500$0$0$NoLink
Antoine Roussel (1 Way Contract)Crunch (TAM)LW291989-11-20No200 Lbs6 ft0NoNoNo4UFAPro & Farm2,950,000$2,950,000$1,268,994$NoLink
Ben HarpurCrunch (TAM)D241995-01-12No222 Lbs6 ft6NoNoNo1ELCPro & Farm600,000$0$0$NoLink
Brendan LemieuxCrunch (TAM)LW221996-03-14No210 Lbs6 ft1NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Chris ThorburnCrunch (TAM)LW/RW351983-06-03No235 Lbs6 ft3NoNoNo2UFAPro & Farm900,000$0$0$NoLink
Dan RenoufCrunch (TAM)D241994-05-31Yes205 Lbs6 ft2NoNoNo2ELCPro & Farm900,000$0$0$NoLink
Dennis YanCrunch (TAM)LW211997-04-14Yes197 Lbs6 ft1NoNoNo3ELCPro & Farm750,000$0$0$NoLink
Graham KnottCrunch (TAM)LW221997-01-13Yes191 Lbs6 ft3NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Jakub JerabekCrunch (TAM)D271991-05-12No182 Lbs5 ft10NoNoNo4RFAPro & Farm800,000$0$0$NoLink
Joe ColborneCrunch (TAM)C/LW/RW281990-01-30No221 Lbs6 ft5NoNoNo4UFAPro & Farm650,000$0$0$NoLink
Jordan NolanCrunch (TAM)LW/RW291989-06-23No219 Lbs6 ft3NoNoNo3UFAPro & Farm1,300,000$0$0$NoLink
Kyle WoodCrunch (TAM)D221996-05-03Yes235 Lbs6 ft7NoNoNo2ELCPro & Farm700,000$0$0$NoLink
Liam O'BrienCrunch (TAM)LW241994-07-29No215 Lbs6 ft1NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Luke WitkowskiCrunch (TAM)D281990-04-14No217 Lbs6 ft2NoNoNo3UFAPro & Farm900,000$0$0$NoLink
Madison BoweyCrunch (TAM)D231995-04-22No195 Lbs6 ft1NoNoNo1ELCPro & Farm800,000$0$0$NoLink
Mason MarchmentCrunch (TAM)LW231995-03-06Yes201 Lbs6 ft4NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Mathieu JosephCrunch (TAM)LW/RW211997-02-09Yes173 Lbs6 ft1NoNoNo3ELCPro & Farm600,000$0$0$NoLink
Mitchell StephensCrunch (TAM)C211997-02-05Yes191 Lbs6 ft0NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Nicholas BaptisteCrunch (TAM)C/RW231995-08-04No206 Lbs6 ft1NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Nicolas RoyCrunch (TAM)C211997-02-05Yes208 Lbs6 ft4NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Rasmus AnderssonCrunch (TAM)D221996-10-26No214 Lbs6 ft1NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Ryan ReavesCrunch (TAM)RW321987-01-19No225 Lbs6 ft1NoNoNo4UFAPro & Farm2,500,000$0$0$NoLink
Samuel MontembeaultCrunch (TAM)G221996-10-30Yes192 Lbs6 ft3NoNoNo3ELCPro & Farm700,000$0$0$NoLink
Sean KuralyCrunch (TAM)C/LW251993-01-20No205 Lbs6 ft2NoNoNo1ELCPro & Farm975,000$0$0$NoLink
Thomas GreissCrunch (TAM)G321986-01-28No228 Lbs6 ft1NoNoNo3UFAPro & Farm3,350,000$0$0$NoLink
Trent FredericCrunch (TAM)C201998-02-11Yes203 Lbs6 ft2NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Tyler BertuzziCrunch (TAM)LW231995-02-23No198 Lbs6 ft0NoNoNo1ELCPro & Farm800,000$0$0$NoLink
Will ButcherCrunch (TAM)D241995-01-06Yes190 Lbs5 ft10NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2924.76206 Lbs6 ft22.48996,638$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Mitchell Stephens30122
3Nicholas Baptiste20122
4Brendan Lemieux10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Will Butcher40122
230122
3Rasmus AnderssonKyle Wood20122
4Will Butcher10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Mitchell Stephens40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Will Butcher60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Will Butcher60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Will Butcher60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Will Butcher60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Will Butcher
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Will Butcher
Extra Forwards
Normal PowerPlayPenalty Kill
Liam O'Brien, Brendan Lemieux, Liam O'Brien, Brendan Lemieux
Extra Defensemen
Normal PowerPlayPenalty Kill
Rasmus Andersson, Kyle Wood, Rasmus AnderssonKyle Wood,
Penalty Shots
, , , , Brendan Lemieux
Goalie
#1 : Thomas Greiss, #2 : Samuel Montembeault


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000743220000007430000000000041.00071320004839438433564063712529101732800.00%50100.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
2Americans2010001035-2100000102111010000014-320.500325004839438413564063712563231444500.00%7185.71%0699138050.65%636131348.44%33672046.67%12178871141324547273
3Barracuda20101000550000000000002010100055020.500510150048394382735640637125451530268225.00%8187.50%1699138050.65%636131348.44%33672046.67%12178871141324547273
4Bears21100000550000000000002110000055020.50051015004839438473564063712533822568337.50%11190.91%0699138050.65%636131348.44%33672046.67%12178871141324547273
5Bruins21001000532100010003211100000021141.00051015004839438563564063712532122049700.00%10190.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
6Checkers21001000972100010004311100000054141.000917260048394386935640637125551418581317.69%8187.50%1699138050.65%636131348.44%33672046.67%12178871141324547273
7Condors22000000633000000000002200000063341.000611170048394384435640637125311322338112.50%11281.82%0699138050.65%636131348.44%33672046.67%12178871141324547273
8Devils31200000611-5110000004222020000029-720.3336111700483943872356406371258219305713215.38%14378.57%0699138050.65%636131348.44%33672046.67%12178871141324547273
9Falcons31101000963210010006241010000034-140.667915240048394388535640637125601419811516.67%7185.71%0699138050.65%636131348.44%33672046.67%12178871141324547273
10Gulls3120000057-23120000057-20000000000020.333591400483943877356406371255015516114321.43%19478.95%0699138050.65%636131348.44%33672046.67%12178871141324547273
11Heat11000000743000000000001100000074321.0007132000483943827356406371252361220500.00%6183.33%0699138050.65%636131348.44%33672046.67%12178871141324547273
12Icehogs11000000321000000000001100000032121.000358004839438213564063712513541710110.00%220.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
13Marlies11000000431000000000001100000043121.0004812004839438323564063712521812204125.00%50100.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
14Monsters312000009902020000047-31100000052320.333917260048394388835640637125752514761400.00%6183.33%0699138050.65%636131348.44%33672046.67%12178871141324547273
15Moose2110000056-1000000000002110000056-120.500510150048394384335640637125411120549111.11%8275.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
16Penguins31200000710-31010000003-32110000077020.333713200048394387235640637125801940641100.00%18288.89%0699138050.65%636131348.44%33672046.67%12178871141324547273
17Phantoms21000100761210001007610000000000030.750713200048394384835640637125843316508225.00%8275.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
18Pirates11000000734110000007340000000000021.00071320004839438173564063712529316224125.00%7271.43%0699138050.65%636131348.44%33672046.67%12178871141324547273
19Reign21001000523110000003121000100021141.0005914004839438393564063712535830317114.29%5180.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
20Senators1000000134-11000000134-10000000000010.50036900483943822356406371252451918200.00%6183.33%0699138050.65%636131348.44%33672046.67%12178871141324547273
21Sound Tigers211000004401010000034-11100000010120.5004812014839438493564063712530724438225.00%50100.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
Total482217052111361288239703211646042513100200072684590.615136252388014839438115135640637125107930852010422032512.32%2113384.36%3699138050.65%636131348.44%33672046.67%12178871141324547273
23Wild2110000046-21010000005-51100000041320.50048120048394383835640637125481422334125.00%11281.82%0699138050.65%636131348.44%33672046.67%12178871141324547273
24Wolf Pack2010010046-21000010023-11010000023-110.25048120048394384335640637125501530529111.11%15193.33%1699138050.65%636131348.44%33672046.67%12178871141324547273
25Wolves1010000034-1000000000001010000034-100.0003690048394382335640637125224823400.00%40100.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
26Wolves11000000431110000004310000000000021.0004711004839438283564063712524210225120.00%5180.00%0699138050.65%636131348.44%33672046.67%12178871141324547273
_Since Last GM Reset482217052111361288239703211646042513100200072684590.615136252388014839438115135640637125107930852010422032512.32%2113384.36%3699138050.65%636131348.44%33672046.67%12178871141324547273
_Vs Conference321114042017984-51656022014041-11668020003943-4330.51679149228014839438768356406371257212063657181331813.53%1402185.00%2699138050.65%636131348.44%33672046.67%12178871141324547273

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4859W113625238811511079308520104201
All Games
GPWLOTWOTL SOWSOLGFGA
4822175211136128
Home Games
GPWLOTWOTL SOWSOLGFGA
239732116460
Visitor Games
GPWLOTWOTL SOWSOLGFGA
25131020007268
Last 10 Games
WLOTWOTL SOWSOL
441100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2032512.32%2113384.36%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
356406371254839438
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
699138050.65%636131348.44%33672046.67%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12178871141324547273


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-028Gulls3Crunch0LBoxScore
3 - 2018-10-0416Crunch3Condors1WBoxScore
5 - 2018-10-0636Crunch3Condors2WBoxScore
6 - 2018-10-0746Crunch4Penguins3WBoxScore
8 - 2018-10-0960Sound Tigers4Crunch3LBoxScore
11 - 2018-10-1278Devils2Crunch4WBoxScore
14 - 2018-10-1599Crunch5Monsters2WBoxScore
16 - 2018-10-17113Wolf Pack3Crunch2LXBoxScore
19 - 2018-10-20137Reign1Crunch3WBoxScore
20 - 2018-10-21145Crunch2Barracuda1WXBoxScore
23 - 2018-10-24166Admirals3Crunch4WBoxScore
26 - 2018-10-27186Crunch2Wolf Pack3LBoxScore
28 - 2018-10-29199Monsters3Crunch1LBoxScore
31 - 2018-11-01220Gulls2Crunch1LBoxScore
33 - 2018-11-03237Crunch4Wild1WBoxScore
35 - 2018-11-05251Wild5Crunch0LBoxScore
37 - 2018-11-07267Crunch2Bears3LBoxScore
39 - 2018-11-09282Crunch2Bruins1WBoxScore
41 - 2018-11-11291Admirals1Crunch3WBoxScore
43 - 2018-11-13304Crunch7Heat4WBoxScore
45 - 2018-11-15320Falcons1Crunch4WBoxScore
48 - 2018-11-18341Crunch3Falcons4LBoxScore
49 - 2018-11-19354Americans1Crunch2WXXBoxScore
52 - 2018-11-22375Crunch4Marlies3WBoxScore
54 - 2018-11-24384Gulls2Crunch4WBoxScore
57 - 2018-11-27406Crunch3Moose2WBoxScore
58 - 2018-11-28415Senators4Crunch3LXXBoxScore
61 - 2018-12-01439Falcons1Crunch2WXBoxScore
63 - 2018-12-03452Crunch3Wolves4LBoxScore
65 - 2018-12-05462Crunch5Checkers4WBoxScore
67 - 2018-12-07477Pirates3Crunch7WBoxScore
69 - 2018-12-09498Crunch3Bears2WBoxScore
71 - 2018-12-11507Monsters4Crunch3LBoxScore
74 - 2018-12-14529Crunch2Reign1WXBoxScore
76 - 2018-12-16540Penguins3Crunch0LBoxScore
78 - 2018-12-18556Crunch0Devils6LBoxScore
80 - 2018-12-20568Checkers3Crunch4WXBoxScore
82 - 2018-12-22585Crunch3Penguins4LBoxScore
84 - 2018-12-24595Crunch3Barracuda4LBoxScore
86 - 2018-12-26608Phantoms4Crunch3LXBoxScore
88 - 2018-12-28626Crunch3Icehogs2WBoxScore
90 - 2018-12-30635Crunch2Moose4LBoxScore
91 - 2018-12-31645Wolves3Crunch4WBoxScore
94 - 2019-01-03664Crunch1Americans4LBoxScore
95 - 2019-01-04676Bruins2Crunch3WXBoxScore
98 - 2019-01-07699Phantoms2Crunch4WBoxScore
99 - 2019-01-08709Crunch2Devils3LBoxScore
102 - 2019-01-11728Crunch1Sound Tigers0WBoxScore
103 - 2019-01-12737Barracuda-Crunch-
106 - 2019-01-15755Crunch-Condors-
107 - 2019-01-16769Devils-Crunch-
110 - 2019-01-19792Crunch-Sound Tigers-
111 - 2019-01-20800Bruins-Crunch-
114 - 2019-01-23820Crunch-Wolf Pack-
116 - 2019-01-25829Comets-Crunch-
119 - 2019-01-28855Devils-Crunch-
120 - 2019-01-29863Crunch-Phantoms-
122 - 2019-01-31872Crunch-Monsters-
124 - 2019-02-02891Moose-Crunch-
127 - 2019-02-05916Sound Tigers-Crunch-
129 - 2019-02-07933Crunch-Monsters-
130 - 2019-02-08939Crunch-Stars-
132 - 2019-02-10953Bears-Crunch-
134 - 2019-02-12966Crunch-Griffins-
136 - 2019-02-14974Crunch-Gulls-
138 - 2019-02-16988Rampage-Crunch-
141 - 2019-02-191010Crunch-IceCaps-
143 - 2019-02-211020Stars-Crunch-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241046Comets-Crunch-
148 - 2019-02-261055Crunch-Senators-
151 - 2019-03-011075Crunch-Phantoms-
152 - 2019-03-021084Sound Tigers-Crunch-
157 - 2019-03-071111Reign-Crunch-
160 - 2019-03-101133Wolf Pack-Crunch-
161 - 2019-03-111142Crunch-Senators-
166 - 2019-03-161168Wolf Pack-Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,989,161$ 2,595,250$ 2,597,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,561,107$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 19,499$ 1,306,433$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201848221705211136128823970321164604251310020007268459136252388014839438115135640637125107930852010422032512.32%2113384.36%3699138050.65%636131348.44%33672046.67%12178871141324547273
Total Regular Season48221705211136128823970321164604251310020007268459136252388014839438115135640637125107930852010422032512.32%2113384.36%3699138050.65%636131348.44%33672046.67%12178871141324547273