Crunch

GP: 20 | W: 12 | L: 7 | OTL: 1 | P: 25
GF: 21 | GA: 27 | PP%: 13.70% | PK%: 87.38%
GM : Dannick Payment | Morale : 50 | Team Overall : 60
Next Games vs Gulls
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Antoine RousselX100.007992548175638462566358767569706650660
2Sean KuralyXX100.008459847277628660776058792555556650640
3Tyler BertuzziX100.007655777166687669297768672549497150640
4Ryan ReavesX100.009593687382509758455857642571736350630
5Brendan LemieuxX100.007980766580747666506266676344446850630
6Chris ThorburnXX100.008599676990477459546155692580816250620
7Jordan NolanXX100.008376727583567557315657642567696250610
8Mitchell Stephens (R)X100.007671896571747762785763656044446650610
9Nicolas Roy (R)X100.008078846878747859745954665144446250600
10Liam O'BrienX100.008279886879778356504662665945456450600
11Nicholas BaptisteXX100.006542877874568864325662612548486450600
12Will Butcher (R)X100.006141968668698182257448572559596350650
13Ben HarpurX100.008259857082658257254247822548486150650
14Jakub JerabekX100.007743947769697360255348662550506150620
15Rasmus AnderssonX100.005942877977687571254047622545455850610
16Kyle Wood (R)X100.008381896881687351254741653944445650600
Scratches
1Mathieu Joseph (R)XX72.737065826665757864506658625544446350600
2Andy AndreoffXX100.008299707379556057436158592560616150590
3Trent Frederic (R)X100.008280866580535162785763686044446450590
4Dennis Yan (R)X100.007368866568697258505161625844446250580
5Joe ColborneXXX100.008684906684383553664754675144445850550
6Mason Marchment (R)X100.008077885977575854505747654544445750550
7Graham Knott (R)X100.007974896274687447504346624444445450540
8Madison BoweyX100.007343867271646457255947632549496050600
9Luke WitkowskiX100.008399427178456152445048602555565650580
10Dan Renouf (R)X100.007476686676778646253739603744445250580
TEAM AVERAGE98.95787180707663745945555466395152625061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Thomas Greiss100.00586968806254436160588863645950600
2Samuel Montembeault (R)100.00537088784956505851513044445550560
Scratches
1Adam Wilcox100.00556683755356526053533044445650560
TEAM AVERAGE100.0055688078555548605554495051575057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
D.J. Smith47627371454657CAN414700,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mitchell StephensCrunch (TAM)C20971611603272650013.85%433116.584041559000003062.83%30400000.9700000304
2Brendan LemieuxCrunch (TAM)LW20831191202626320025.00%31366.8000000000001137.50%800001.6200000241
3Ryan ReavesCrunch (TAM)RW206410-13807026510011.76%135117.591121253000003033.33%3000010.5700000321
4Will ButcherCrunch (TAM)D20088-1206227000.00%939819.93033635000052000.00%000000.4000000001
5Tyler BertuzziCrunch (TAM)LW20448-31802317280014.29%21979.89000000001111041.67%1200000.8100000020
6Ben HarpurCrunch (TAM)D20437-13606616250016.00%2138719.382021435000042000.00%000000.3600000121
7Nicholas BaptisteCrunch (TAM)C/RW20347-300521280010.71%11869.3300000000000039.49%19500000.7500000111
8Rasmus AnderssonCrunch (TAM)D20235-30011690022.22%622511.270001000000010.00%000000.4400000201
9Mathieu JosephCrunch (TAM)LW/RW20044-3120121011000.00%11849.2500000000000042.86%1400000.4300000000
10Liam O'BrienCrunch (TAM)LW20022020021000.00%0150.750221120000000100.00%400002.6500000002
11Kyle WoodCrunch (TAM)D20011-441543113000.00%623411.7000000000010000.00%000000.0900001000
Team Total or Average220364379-917752942292600013.85%54264912.0476134919500011178252.20%56700010.6000001121112
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thomas GreissCrunch (TAM)2012710.8742.48113700473720000.0000200100
2Samuel MontembeaultCrunch (TAM)20000.9370.9265001160000.0000020000
Team Total or Average2212710.8762.39120300483880000.00002020100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam WilcoxCrunch (TAM)C/LW/RW241994-04-25No187 Lbs6 ft0NoNoNo1ELCPro & Farm500,000$Link
Andy AndreoffCrunch (TAM)C/LW271991-05-16No210 Lbs6 ft1NoNoNo4RFAPro & Farm677,500$677,500$677,500$677,500$Link
Antoine Roussel (1 Way Contract)Crunch (TAM)LW281989-11-20No200 Lbs6 ft0NoNoNo4UFAPro & Farm2,950,000$2,950,000$2,950,000$2,950,000$Link
Ben HarpurCrunch (TAM)D231995-01-12No222 Lbs6 ft6NoNoNo1ELCPro & Farm600,000$Link
Brendan LemieuxCrunch (TAM)LW221996-03-14No210 Lbs6 ft1NoNoNo2ELCPro & Farm850,000$850,000$Link
Chris ThorburnCrunch (TAM)LW/RW351983-06-03No235 Lbs6 ft3NoNoNo2UFAPro & Farm900,000$900,000$Link
Dan RenoufCrunch (TAM)D241994-05-31Yes205 Lbs6 ft2NoNoNo2ELCPro & Farm900,000$900,000$Link
Dennis YanCrunch (TAM)LW211997-04-14Yes197 Lbs6 ft1NoNoNo3ELCPro & Farm750,000$750,000$750,000$Link
Graham KnottCrunch (TAM)LW211997-01-13Yes191 Lbs6 ft3NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Jakub JerabekCrunch (TAM)D271991-05-12No182 Lbs5 ft10NoNoNo4RFAPro & Farm800,000$800,000$800,000$800,000$Link
Joe ColborneCrunch (TAM)C/LW/RW281990-01-30No221 Lbs6 ft5NoNoNo4UFAPro & Farm650,000$650,000$650,000$650,000$Link
Jordan NolanCrunch (TAM)LW/RW291989-06-23No219 Lbs6 ft3NoNoNo3UFAPro & Farm1,300,000$1,300,000$1,300,000$Link
Kyle WoodCrunch (TAM)D221996-05-03Yes235 Lbs6 ft7NoNoNo2ELCPro & Farm700,000$700,000$Link
Liam O'BrienCrunch (TAM)LW241994-07-29No215 Lbs6 ft1NoNoNo1ELCPro & Farm700,000$Link
Luke WitkowskiCrunch (TAM)D281990-04-14No217 Lbs6 ft2NoNoNo3UFAPro & Farm900,000$900,000$900,000$Link
Madison BoweyCrunch (TAM)D231995-04-22No195 Lbs6 ft1NoNoNo1ELCPro & Farm800,000$Link
Mason MarchmentCrunch (TAM)LW231995-03-06Yes201 Lbs6 ft4NoNoNo2ELCPro & Farm750,000$750,000$Link
Mathieu Joseph (Out of Payroll)Crunch (TAM)LW/RW211997-02-09Yes173 Lbs6 ft1NoNoNo3ELCPro & Farm600,000$600,000$600,000$Link
Mitchell StephensCrunch (TAM)C211997-02-05Yes191 Lbs6 ft0NoNoNo3ELCPro & Farm850,000$850,000$850,000$Link
Nicholas BaptisteCrunch (TAM)C/RW231995-08-04No206 Lbs6 ft1NoNoNo1ELCPro & Farm750,000$Link
Nicolas RoyCrunch (TAM)C211997-02-05Yes208 Lbs6 ft4NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Rasmus AnderssonCrunch (TAM)D221996-10-26No214 Lbs6 ft1NoNoNo2ELCPro & Farm800,000$800,000$Link
Ryan ReavesCrunch (TAM)RW311987-01-19No225 Lbs6 ft1NoNoNo4UFAPro & Farm2,500,000$2,500,000$2,500,000$2,500,000$Link
Samuel MontembeaultCrunch (TAM)C221996-10-30Yes192 Lbs6 ft3NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Sean KuralyCrunch (TAM)C/LW251993-01-20No205 Lbs6 ft2NoNoNo1ELCPro & Farm975,000$Link
Thomas GreissCrunch (TAM)C321986-01-28No228 Lbs6 ft1NoNoNo3UFAPro & Farm3,350,000$3,350,000$3,350,000$Link
Trent FredericCrunch (TAM)C201998-02-11Yes203 Lbs6 ft2NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Tyler BertuzziCrunch (TAM)LW231995-02-23No198 Lbs6 ft0NoNoNo1ELCPro & Farm800,000$Link
Will ButcherCrunch (TAM)D231995-01-06Yes190 Lbs5 ft10NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2924.59206 Lbs6 ft22.48996,638$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan Reaves40122
2Mitchell Stephens30122
3Tyler BertuzziNicholas Baptiste20122
4Brendan Lemieux10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Will ButcherBen Harpur40122
230122
3Rasmus AnderssonKyle Wood20122
4Will ButcherBen Harpur10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan Reaves60122
2Mitchell Stephens40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Will ButcherBen Harpur60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Tyler Bertuzzi40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Will ButcherBen Harpur60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Will ButcherBen Harpur60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Tyler Bertuzzi40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Will ButcherBen Harpur60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Ryan ReavesWill ButcherBen Harpur
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Ryan ReavesWill ButcherBen Harpur
Extra Forwards
Normal PowerPlayPenalty Kill
Liam O'Brien, Brendan Lemieux, Liam O'Brien, Brendan Lemieux
Extra Defensemen
Normal PowerPlayPenalty Kill
Rasmus Andersson, Kyle Wood, Rasmus AnderssonKyle Wood,
Penalty Shots
, , , Tyler Bertuzzi, Brendan Lemieux
Goalie
#1 : Thomas Greiss, #2 : Samuel Montembeault


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000743220000007430000000000041.0007132000211518143144152143229101732800.00%50100.00%028255051.27%25152048.27%13528048.21%485347491140228111
2Barracuda10001000211000000000001000100021121.00024600211518171441521432291212114125.00%60100.00%128255051.27%25152048.27%13528048.21%485347491140228111
3Bears1010000023-1000000000001010000023-100.00024600211518118144152143218514323133.33%7185.71%028255051.27%25152048.27%13528048.21%485347491140228111
4Bruins11000000211000000000001100000021121.0002460021151812214415214321461023400.00%50100.00%028255051.27%25152048.27%13528048.21%485347491140228111
5Condors22000000633000000000002200000063341.00061117002115181441441521432311322338112.50%11281.82%028255051.27%25152048.27%13528048.21%485347491140228111
6Devils11000000422110000004220000000000021.000471100211518124144152143218612225240.00%6266.67%028255051.27%25152048.27%13528048.21%485347491140228111
7Gulls2020000015-42020000015-40000000000000.00011200211518141144152143228112844600.00%14378.57%028255051.27%25152048.27%13528048.21%485347491140228111
8Heat11000000743000000000001100000074321.000713200021151812714415214322361220500.00%6183.33%028255051.27%25152048.27%13528048.21%485347491140228111
9Monsters211000006511010000013-21100000052320.500611170021151816114415214324616855900.00%4175.00%028255051.27%25152048.27%13528048.21%485347491140228111
10Penguins11000000431000000000001100000043121.00048120021151812414415214322561819100.00%90100.00%028255051.27%25152048.27%13528048.21%485347491140228111
11Reign11000000312110000003120000000000021.0003580021151812314415214321222134125.00%10100.00%028255051.27%25152048.27%13528048.21%485347491140228111
Since Last GM Reset2011701100554871045001002127-6107201000342113250.625551031580021151814411441521432388125217412731013.70%1031387.38%228255051.27%25152048.27%13528048.21%485347491140228111
13Sound Tigers1010000034-11010000034-10000000000000.00036900211518126144152143217310233266.67%30100.00%028255051.27%25152048.27%13528048.21%485347491140228111
Total2011701100554871045001002127-6107201000342113250.625551031580021151814411441521432388125217412731013.70%1031387.38%228255051.27%25152048.27%13528048.21%485347491140228111
Vs Conference13560110031310724001001418-46320100017134130.50031588900211518128914415214322578214429448816.67%70888.57%228255051.27%25152048.27%13528048.21%485347491140228111
16Wild2110000046-21010000005-51100000041320.5004812002115181381441521432481422334125.00%11281.82%028255051.27%25152048.27%13528048.21%485347491140228111
17Wolf Pack2010010046-21000010023-11010000023-110.2504812002115181431441521432501530529111.11%15193.33%128255051.27%25152048.27%13528048.21%485347491140228111

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2025W35510315844138812521741200
All Games
GPWLOTWOTL SOWSOLGFGA
2011711005548
Home Games
GPWLOTWOTL SOWSOLGFGA
104501002127
Visitor Games
GPWLOTWOTL SOWSOLGFGA
107210003421
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
731013.70%1031387.38%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
14415214322115181
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
28255051.27%25152048.27%13528048.21%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
485347491140228111


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-028Gulls3Crunch0LBoxScore
3 - 2018-10-0416Crunch3Condors1WBoxScore
5 - 2018-10-0636Crunch3Condors2WBoxScore
6 - 2018-10-0746Crunch4Penguins3WBoxScore
8 - 2018-10-0960Sound Tigers4Crunch3LBoxScore
11 - 2018-10-1278Devils2Crunch4WBoxScore
14 - 2018-10-1599Crunch5Monsters2WBoxScore
16 - 2018-10-17113Wolf Pack3Crunch2LXBoxScore
19 - 2018-10-20137Reign1Crunch3WBoxScore
20 - 2018-10-21145Crunch2Barracuda1WXBoxScore
23 - 2018-10-24166Admirals3Crunch4WBoxScore
26 - 2018-10-27186Crunch2Wolf Pack3LBoxScore
28 - 2018-10-29199Monsters3Crunch1LBoxScore
31 - 2018-11-01220Gulls2Crunch1LBoxScore
33 - 2018-11-03237Crunch4Wild1WBoxScore
35 - 2018-11-05251Wild5Crunch0LBoxScore
37 - 2018-11-07267Crunch2Bears3LBoxScore
39 - 2018-11-09282Crunch2Bruins1WBoxScore
41 - 2018-11-11291Admirals1Crunch3WBoxScore
43 - 2018-11-13304Crunch7Heat4WBoxScore
45 - 2018-11-15320Falcons-Crunch-
48 - 2018-11-18341Crunch-Falcons-
49 - 2018-11-19354Americans-Crunch-
52 - 2018-11-22375Crunch-Marlies-
54 - 2018-11-24384Gulls-Crunch-
57 - 2018-11-27406Crunch-Moose-
58 - 2018-11-28415Senators-Crunch-
61 - 2018-12-01439Falcons-Crunch-
63 - 2018-12-03452Crunch-Wolves-
65 - 2018-12-05462Crunch-Checkers-
67 - 2018-12-07477Pirates-Crunch-
69 - 2018-12-09498Crunch-Bears-
71 - 2018-12-11507Monsters-Crunch-
74 - 2018-12-14529Crunch-Reign-
76 - 2018-12-16540Penguins-Crunch-
78 - 2018-12-18556Crunch-Devils-
80 - 2018-12-20568Checkers-Crunch-
82 - 2018-12-22585Crunch-Penguins-
84 - 2018-12-24595Crunch-Barracuda-
86 - 2018-12-26608Phantoms-Crunch-
88 - 2018-12-28626Crunch-Icehogs-
90 - 2018-12-30635Crunch-Moose-
91 - 2018-12-31645Wolves-Crunch-
94 - 2019-01-03664Crunch-Americans-
95 - 2019-01-04676Bruins-Crunch-
98 - 2019-01-07699Phantoms-Crunch-
99 - 2019-01-08709Crunch-Devils-
102 - 2019-01-11728Crunch-Sound Tigers-
103 - 2019-01-12737Barracuda-Crunch-
106 - 2019-01-15755Crunch-Condors-
107 - 2019-01-16769Devils-Crunch-
110 - 2019-01-19792Crunch-Sound Tigers-
111 - 2019-01-20800Bruins-Crunch-
114 - 2019-01-23820Crunch-Wolf Pack-
116 - 2019-01-25829Comets-Crunch-
119 - 2019-01-28855Devils-Crunch-
120 - 2019-01-29863Crunch-Phantoms-
122 - 2019-01-31872Crunch-Monsters-
124 - 2019-02-02891Moose-Crunch-
127 - 2019-02-05916Sound Tigers-Crunch-
129 - 2019-02-07933Crunch-Monsters-
130 - 2019-02-08939Crunch-Stars-
132 - 2019-02-10953Bears-Crunch-
134 - 2019-02-12966Crunch-Griffins-
136 - 2019-02-14974Crunch-Gulls-
138 - 2019-02-16988Rampage-Crunch-
141 - 2019-02-191010Crunch-IceCaps-
143 - 2019-02-211020Stars-Crunch-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241046Comets-Crunch-
148 - 2019-02-261055Crunch-Senators-
151 - 2019-03-011075Crunch-Phantoms-
152 - 2019-03-021084Sound Tigers-Crunch-
157 - 2019-03-071111Reign-Crunch-
160 - 2019-03-101133Wolf Pack-Crunch-
161 - 2019-03-111142Crunch-Senators-
166 - 2019-03-161168Wolf Pack-Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,535,250$ 2,537,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
878,600$ 0$ 696,352$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 19,143$ 2,392,875$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182011701100554871045001002127-610720100034211325551031580021151814411441521432388125217412731013.70%1031387.38%228255051.27%25152048.27%13528048.21%485347491140228111
Total Regular Season2011701100554871045001002127-610720100034211325551031580021151814411441521432388125217412731013.70%1031387.38%228255051.27%25152048.27%13528048.21%485347491140228111