Comets

GP: 48 | W: 25 | L: 17 | OTL: 6 | P: 56
GF: 111 | GA: 100 | PP%: 15.68% | PK%: 86.75%
GM : Rino Di Antonio | Morale : 50 | Team Overall : 60
Next Games #734 vs Heat
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Scottie UpshallXX100.008445797473588559506560822579826850660
2Ryan CallahanX100.008655877769656166406558756077836650650
3Jiri HudlerXX100.006141958266616972567059532577826450640
4Tanner KeroXX100.007368837768737761765758655553536450620
5Drew MillerXX100.007844897269566363555459702573766350610
6J.T. BrownXX100.008092857364547359496056652566686250600
7Tanner GlassX100.008799686780547059355055732572756150600
8Juho Lammikko (R)XXX100.008176916876677058735853665044446150590
9Brandon MashinterX100.008180826580677058505557665444446250590
10Jeremy Bracco (R)X100.007264927364677058506547624544445950580
11Cole CasselsX100.006765716565768253665547584544445650560
12Alexander PetrovicX99.008697617781657560255348622564656050640
13Patrick WierciochX100.007877796577666859255351654844446150600
14Guillaume Brisebois (R)X100.007973926373748148254040633844445450590
15Evan McEneny (R)X100.007975886875575759255252654944446050590
16Ashton SautnerX100.007871936471667147253741623944445350570
Scratches
1Jansen Harkins (R)X100.007772876772565852655346634444445650550
2Hunter Fejes (R)X100.007071696371535450504846594444445250520
3Ben ChiarotX93.708345836980677557255648752564656150650
4Anton Cederholm (R)X100.008376996476363541252839633744444950530
TEAM AVERAGE99.63786984707362685745545166395557605060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Joe Cannata100.00635063756570727377763044446850650
Scratches
TEAM AVERAGE100.0063506375657072737776304444685065
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Travis Green75636375634364CAN441800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jiri HudlerComets (VAN)LW/RW4891726108018817661211.84%274015.44167161130000393151.25%8000000.7026000425
2Drew MillerComets (VAN)LW/RW48169251028081638961117.98%769814.5453821113000001138.10%4200010.7213000644
3Tanner KeroComets (VAN)C/LW481782563407311010152116.83%881116.91628261431011275359.16%83000000.6237000626
4Evan McEnenyComets (VAN)D48214164460451532666.25%3471514.9116724105011075110.00%100000.4502000020
5Ben ChiarotComets (VAN)D2501414280312119320.00%3457923.1904415108000084000.00%000000.4800000021
6Patrick WierciochComets (VAN)D48112132300882228383.57%3585817.8912318120000099100.00%000000.3011000023
7Alexander PetrovicComets (VAN)D481101107151353132273.12%3791219.0114522129000097000.00%000000.2400010024
8J.T. BrownComets (VAN)LW/RW483710-2255205046146.52%24539.4500009000070042.86%2800000.4400001011
9Tanner GlassComets (VAN)RW486410-362109139432913.95%94689.77011422000010034.21%3800000.4300011111
10Juho LammikkoComets (VAN)C/LW/RW32246-12410224522009.09%033410.45112342000021064.11%36500000.3600101111
11Ryan CallahanComets (VAN)RW11246260141726007.69%322620.560225530110380062.50%800000.5301000201
12Brandon MashinterComets (VAN)LW48235-2175372628217.14%42705.63000130000270057.69%2600000.3704001111
13Ashton SautnerComets (VAN)D272240180561670028.57%2245416.82000318000043200.00%000000.1800000011
14Guillaume BriseboisComets (VAN)D48033-238074256000.00%2563313.20000130000233000.00%000000.0900000010
15Nikita TryamkinCanucksD1022140424000.00%32323.180224500006000.00%000001.7300000010
16Jeremy BraccoComets (VAN)RW27202-740620142514.29%01746.4800003000001055.56%900000.2301000010
17Scottie UpshallComets (VAN)LW/RW7011-12015139000.00%314921.400001300000180046.15%6500000.1300000100
18Cole CasselsComets (VAN)C1000-100011000.00%01515.7300001000000044.44%900000.0000000000
Team Total or Average611651141791842535810597583388611.15%228852213.951633491641057123360215657.69%150100010.42725124222429
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Thatcher DemkoCanucks42211650.9022.08242905848580010.65632420704
2Joe CannataComets (VAN)104110.9501.2348901102000000.5004648110
Team Total or Average52251760.9111.932918069410580010.639364848814


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexander PetrovicComets (VAN)D261992-03-02No206 Lbs6 ft4NoNoNo4ELCPro & Farm2,000,000$0$0$NoLink
Anton CederholmComets (VAN)D231995-02-21Yes204 Lbs6 ft2NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Ashton SautnerComets (VAN)D241994-05-27No195 Lbs6 ft1NoNoNo1ELCPro & Farm675,000$0$0$NoLink
Ben Chiarot (Out of Payroll)Comets (VAN)D271991-05-08No219 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$0$0$YesLink
Brandon MashinterComets (VAN)LW301988-09-19No212 Lbs6 ft4NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Cole CasselsComets (VAN)C231995-05-04No178 Lbs6 ft0NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Drew MillerComets (VAN)LW/RW341984-02-17No180 Lbs6 ft2NoNoNo1UFAPro & Farm900,000$0$0$NoLink
Evan McEnenyComets (VAN)D241994-05-22Yes203 Lbs6 ft2NoNoNo2ELCPro & Farm575,000$0$0$NoLink
Guillaume BriseboisComets (VAN)D211997-07-21Yes175 Lbs6 ft2NoNoNo3ELCPro & Farm750,000$0$0$NoLink
Hunter FejesComets (VAN)LW241994-05-31Yes190 Lbs6 ft1NoNoNo2ELCPro & Farm600,000$0$0$NoLink
J.T. BrownComets (VAN)LW/RW281990-07-02No169 Lbs5 ft10NoNoNo3UFAPro & Farm1,250,000$0$0$NoLink
Jansen HarkinsComets (VAN)C211997-05-23Yes182 Lbs6 ft1NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Jeremy BraccoComets (VAN)RW211997-03-17Yes180 Lbs5 ft9NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Jiri HudlerComets (VAN)LW/RW351984-01-04No186 Lbs5 ft10NoNoNo1UFAPro & Farm3,050,000$0$0$NoLink
Joe CannataComets (VAN)G291990-01-02No200 Lbs6 ft1NoNoNo2UFAPro & Farm900,000$0$0$NoLink
Juho LammikkoComets (VAN)C/LW/RW221996-01-28Yes207 Lbs6 ft2NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Patrick WierciochComets (VAN)D281990-09-11No202 Lbs6 ft3NoNoNo1UFAPro & Farm2,700,000$0$0$NoLink
Ryan CallahanComets (VAN)RW331985-03-20No187 Lbs5 ft11NoNoNo2UFAPro & Farm5,800,000$0$0$NoLink
Scottie UpshallComets (VAN)LW/RW351983-10-06No200 Lbs6 ft0NoNoNo3UFAPro & Farm1,000,000$0$0$NoLink
Tanner GlassComets (VAN)RW351983-11-28No213 Lbs6 ft1NoNoNo1UFAPro & Farm800,000$0$0$NoLink
Tanner KeroComets (VAN)C/LW261992-07-24No185 Lbs6 ft0NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2127.10194 Lbs6 ft12.001,276,190$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tanner Kero40122
2Jiri HudlerDrew Miller30122
3J.T. BrownTanner Glass20122
4Brandon MashinterJeremy Bracco10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander Petrovic40122
2Patrick WierciochEvan McEneny30122
3Guillaume BriseboisAshton Sautner20122
4Alexander Petrovic10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tanner Kero60122
2Jiri HudlerDrew Miller40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander Petrovic60122
2Patrick WierciochEvan McEneny40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Jiri HudlerTanner Kero40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander Petrovic60122
2Patrick WierciochEvan McEneny40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Alexander Petrovic60122
240122Patrick WierciochEvan McEneny40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Jiri HudlerTanner Kero40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Alexander Petrovic60122
2Patrick WierciochEvan McEneny40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tanner KeroAlexander Petrovic
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tanner KeroAlexander Petrovic
Extra Forwards
Normal PowerPlayPenalty Kill
Tanner Glass, J.T. Brown, Brandon MashinterTanner Glass, J.T. BrownBrandon Mashinter
Extra Defensemen
Normal PowerPlayPenalty Kill
Guillaume Brisebois, Ashton Sautner, Patrick WierciochGuillaume BriseboisAshton Sautner, Patrick Wiercioch
Penalty Shots
, , Jiri Hudler, Tanner Kero, Drew Miller
Goalie
#1 : , #2 : Joe Cannata


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000514000000000002200000051441.000591401403434104533532630651241316419111.11%8187.50%0695131252.97%697137250.80%32264250.16%12108631144339567286
2Americans5220001013103321000007432010001066060.600132134014034341013333532630651116346313729620.69%28485.71%0695131252.97%697137250.80%32264250.16%12108631144339567286
3Barracuda1010000012-1000000000001010000012-100.0001120040343410153353263065122101224500.00%6183.33%0695131252.97%697137250.80%32264250.16%12108631144339567286
4Bruins11000000413110000004130000000000021.00046100040343410253353263065117616166116.67%80100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
5Checkers22000000734110000004131100000032141.00071320004034341042335326306513613223612216.67%9277.78%0695131252.97%697137250.80%32264250.16%12108631144339567286
6Condors21000001633210000016330000000000030.750611170140343410333353263065127111645800.00%70100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
7Devils11000000532000000000001100000053221.0005101500403434101833532630651231112296466.67%6183.33%0695131252.97%697137250.80%32264250.16%12108631144339567286
8Falcons1000000112-1000000000001000000112-110.50012300403434102133532630651180819700.00%40100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
9Griffins11000000211110000002110000000000021.000246004034341014335326306511781222300.00%60100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
10Gulls1000000145-1000000000001000000145-110.5004711004034341021335326306512266145240.00%3166.67%0695131252.97%697137250.80%32264250.16%12108631144339567286
11Heat11000000312110000003120000000000021.000369004034341020335326306511636184125.00%30100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
12IceCaps51300001813-52020000037-43110000156-130.30081624004034341010933532630651131376611419315.79%30583.33%0695131252.97%697137250.80%32264250.16%12108631144339567286
13Marlies503001101014-4201000105503020010059-430.3001016260040343410883353263065111936571242129.52%24195.83%1695131252.97%697137250.80%32264250.16%12108631144339567286
14Monsters1010000024-2000000000001010000024-200.00024600403434102333532630651206820800.00%4250.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
15Penguins21100000541000000000002110000054120.5005101510403434105133532630651401324388112.50%9188.89%0695131252.97%697137250.80%32264250.16%12108631144339567286
16Phantoms1010000024-2000000000001010000024-200.0002460040343410193353263065132126224125.00%3166.67%0695131252.97%697137250.80%32264250.16%12108631144339567286
17Pirates32000001835210000015231100000031250.83381422014034341066335326306517520337010220.00%130100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
18Rampage11000000321110000003210000000000021.0003690040343410223353263065119516186233.33%8187.50%0695131252.97%697137250.80%32264250.16%12108631144339567286
19Reign1010000002-21010000002-20000000000000.00000000403434101533532630651178912500.00%2150.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
20Senators1010000001-11010000001-10000000000000.000000004034341014335326306511324251100.00%20100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
21Stars10000010211000000000001000001021121.000224004034341022335326306512758189111.11%30100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
Total4822170013511110011231370001252401225910001235960-1560.583111197308164034341098233532630651105933454910822363715.68%2343186.75%1695131252.97%697137250.80%32264250.16%12108631144339567286
23Wild33000000945110000004312200000051461.00091625014034341065335326306515421246616425.00%10190.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
24Wolf Pack11000000211110000002110000000000021.0002350040343410123353263065126111822200.00%90100.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
25Wolves21100000440110000001011010000034-120.5004711014034341032335326306515125203311218.18%10190.00%0695131252.97%697137250.80%32264250.16%12108631144339567286
26Wolves31200000511-62110000036-31010000025-320.3335914004034341057335326306519718679912216.67%19763.16%0695131252.97%697137250.80%32264250.16%12108631144339567286
_Since Last GM Reset4822170013511110011231370001252401225910001235960-1560.583111197308164034341098233532630651105933454910822363715.68%2343186.75%1695131252.97%697137250.80%32264250.16%12108631144339567286
_Vs Conference36181100133857114191150001246351117760012139363460.639851502350640343410748335326306518092494268411692816.57%1782387.08%1695131252.97%697137250.80%32264250.16%12108631144339567286
_Vs Division9480012123121133400010853614001111578140.7782340630340343410186335326306511756984176511019.61%39489.74%0695131252.97%697137250.80%32264250.16%12108631144339567286

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4856W21111973089821059334549108216
All Games
GPWLOTWOTL SOWSOLGFGA
4822170135111100
Home Games
GPWLOTWOTL SOWSOLGFGA
2313700125240
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2591001235960
Last 10 Games
WLOTWOTL SOWSOL
420013
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2363715.68%2343186.75%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
3353263065140343410
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
695131252.97%697137250.80%32264250.16%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12108631144339567286


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-027Comets4Americans3WXXBoxScore
3 - 2018-10-0420Comets3Wolves4LBoxScore
4 - 2018-10-0529IceCaps2Comets0LBoxScore
7 - 2018-10-0849Heat1Comets3WBoxScore
10 - 2018-10-1170Americans1Comets4WBoxScore
12 - 2018-10-1384Comets1Marlies2LXBoxScore
15 - 2018-10-16105Comets3IceCaps2WBoxScore
16 - 2018-10-17117Marlies1Comets2WXXBoxScore
19 - 2018-10-20135Pirates0Comets4WBoxScore
20 - 2018-10-21148Comets4Admirals1WBoxScore
22 - 2018-10-23163Comets4Penguins1WBoxScore
25 - 2018-10-26177IceCaps5Comets3LBoxScore
27 - 2018-10-28196Condors0Comets4WBoxScore
31 - 2018-11-01221Americans3Comets0LBoxScore
33 - 2018-11-03234Comets0IceCaps1LBoxScore
34 - 2018-11-04248Comets2Phantoms4LBoxScore
36 - 2018-11-06261Wolves4Comets0LBoxScore
39 - 2018-11-09279Comets2Wolves5LBoxScore
41 - 2018-11-11292Bruins1Comets4WBoxScore
43 - 2018-11-13308Comets1Penguins3LBoxScore
45 - 2018-11-15317Comets5Devils3WBoxScore
47 - 2018-11-17332Reign2Comets0LBoxScore
49 - 2018-11-19350Comets2Marlies3LBoxScore
50 - 2018-11-20362Wolves0Comets1WBoxScore
53 - 2018-11-23382Americans0Comets3WBoxScore
55 - 2018-11-25395Comets2Americans3LBoxScore
57 - 2018-11-27407Comets2Monsters4LBoxScore
59 - 2018-11-29421Comets2Wild1WBoxScore
61 - 2018-12-01432Wild3Comets4WBoxScore
63 - 2018-12-03451Comets1Falcons2LXXBoxScore
65 - 2018-12-05461Comets3Wild0WBoxScore
66 - 2018-12-06470Senators1Comets0LBoxScore
68 - 2018-12-08489Griffins1Comets2WBoxScore
71 - 2018-12-11508Comets2Marlies4LBoxScore
73 - 2018-12-13520Pirates2Comets1LXXBoxScore
75 - 2018-12-15538Comets3Checkers2WBoxScore
77 - 2018-12-17551Comets3Pirates1WBoxScore
78 - 2018-12-18557Rampage2Comets3WBoxScore
82 - 2018-12-22581Condors3Comets2LXXBoxScore
85 - 2018-12-25601Comets2Stars1WXXBoxScore
87 - 2018-12-27613Marlies4Comets3LBoxScore
89 - 2018-12-29630Comets4Gulls5LXXBoxScore
91 - 2018-12-31643Comets2IceCaps3LXXBoxScore
92 - 2019-01-01650Checkers1Comets4WBoxScore
95 - 2019-01-04675Wolves2Comets3WBoxScore
97 - 2019-01-06689Comets1Barracuda2LBoxScore
98 - 2019-01-07703Wolf Pack1Comets2WBoxScore
100 - 2019-01-09717Comets1Admirals0WBoxScore
103 - 2019-01-12734Comets-Heat-
104 - 2019-01-13744Rampage-Comets-
107 - 2019-01-16764Comets-Americans-
108 - 2019-01-17772Stars-Comets-
111 - 2019-01-20794Comets-Griffins-
112 - 2019-01-21804Icehogs-Comets-
116 - 2019-01-25829Comets-Crunch-
117 - 2019-01-26835Admirals-Comets-
118 - 2019-01-27847Comets-Heat-
121 - 2019-01-30865Sound Tigers-Comets-
122 - 2019-01-31874Comets-Icehogs-
125 - 2019-02-03896Heat-Comets-
127 - 2019-02-05912Comets-Condors-
128 - 2019-02-06926Stars-Comets-
131 - 2019-02-09947Comets-Wolves-
133 - 2019-02-11958Heat-Comets-
137 - 2019-02-15981Comets-Wolves-
138 - 2019-02-16991Moose-Comets-
140 - 2019-02-181001Comets-Bruins-
142 - 2019-02-201019Bears-Comets-
143 - 2019-02-211024Comets-Rampage-
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241046Comets-Crunch-
147 - 2019-02-251053Checkers-Comets-
152 - 2019-03-021082Icehogs-Comets-
153 - 2019-03-031088Comets-Griffins-
157 - 2019-03-071114Bears-Comets-
162 - 2019-03-121146Penguins-Comets-
167 - 2019-03-171174IceCaps-Comets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,195,875$ 2,680,000$ 2,610,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,705,403$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 20,592$ 1,379,664$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20184822170013511110011231370001252401225910001235960-156111197308164034341098233532630651105933454910822363715.68%2343186.75%1695131252.97%697137250.80%32264250.16%12108631144339567286
Total Regular Season4822170013511110011231370001252401225910001235960-156111197308164034341098233532630651105933454910822363715.68%2343186.75%1695131252.97%697137250.80%32264250.16%12108631144339567286