Wolf Pack

GP: 20 | W: 10 | L: 9 | OTL: 1 | P: 21
GF: 26 | GA: 29 | PP%: 12.73% | PK%: 84.62%
GM : Corey Heard | Morale : 50 | Team Overall : 56
Next Games vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Chase De LeoX100.006962866262788358735656605344446150580
2Ryan BourqueX100.006961886061747858505656605344446050570
3Mat BodieX100.007165866565717653255141603944445550580
4Daniel Walcott (R)X100.006563696263687448253941563944445150540
5Sergey Zborovskiy (R)X100.007374726874495141252839583744444850530
Scratches
1Jayson MegnaXX100.007672847472616261505956685357586250610
2Gabriel DumontXX100.008644937065547058515356682555566350590
3Maxim Mamin (R)XX100.008568917574576459255462572546466350580
4Nick Sorensen (R)X100.007168777168616257505258615544446050570
5Robin Kovacs (R)XX100.007365906265707649504745604344445450540
6Jordan SchmaltzX100.006141867372566563254847562546465650570
7Conor AllenX100.008077866777545746253641633944445250560
TEAM AVERAGE100.00736384676863685440485061414647575057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Mackenzie Skapski100.00444759784143505145463044444650490
TEAM AVERAGE100.0044475978414350514546304444465049
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Pierre Turgeon72745753454658CAN493600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Chase De LeoWolf Pack (NYR)C204711-4140245350008.00%230415.22011513000182055.59%34900000.7200000132
2Mat BodieWolf Pack (NYR)D202911-4240544233006.06%2045522.751342686000058000.00%000000.4800000102
3Ryan BourqueWolf Pack (NYR)LW20549-61202440460010.87%626413.22101413000000123.08%1300000.6811000204
4Daniel WalcottWolf Pack (NYR)D202682275371429006.90%1739319.691342377000052010.00%000000.4100100121
5Robin KovacsWolf Pack (NYR)LW/RW4022100345000.00%1317.890000000000000.00%200001.2700000100
6Sergey ZborovskiyWolf Pack (NYR)D20011-21151532000.00%6934.67011218000024000.00%000000.2100010000
Team Total or Average104132942-138810157156165007.88%52154214.8338116020800011442254.12%36400000.5411110659
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Chase De LeoWolf Pack (NYR)C231995-10-24No185 Lbs5 ft9NoNoNo1ELCPro & Farm650,000$Link
Conor AllenWolf Pack (NYR)D281990-01-31No210 Lbs6 ft1NoNoNo1UFAPro & Farm750,000$Link
Daniel WalcottWolf Pack (NYR)D241994-02-19Yes174 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$Link
Gabriel DumontWolf Pack (NYR)C/RW281990-10-06No181 Lbs5 ft10NoNoNo3UFAPro & Farm750,999$750,999$750,999$Link
Jayson MegnaWolf Pack (NYR)C/RW281990-02-01No195 Lbs6 ft1NoNoNo1UFAPro & Farm750,000$Link
Jordan SchmaltzWolf Pack (NYR)D251993-10-08No190 Lbs6 ft2NoNoNo1ELCPro & Farm900,000$Link
Mackenzie SkapskiWolf Pack (NYR)D241994-06-15No191 Lbs6 ft3NoNoNo2ELCPro & Farm650,000$650,000$Link
Mat BodieWolf Pack (NYR)D281990-06-03No175 Lbs6 ft0NoNoNo2UFAPro & Farm750,000$750,000$Link
Maxim MaminWolf Pack (NYR)LW/RW231995-01-13Yes191 Lbs6 ft2NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Nick SorensenWolf Pack (NYR)RW241994-10-23Yes182 Lbs6 ft1NoNoNo2ELCPro & Farm850,000$850,000$Link
Robin KovacsWolf Pack (NYR)LW/RW211996-11-15Yes176 Lbs6 ft0NoNoNo2ELCPro & Farm750,000$750,000$Link
Ryan BourqueWolf Pack (NYR)LW271991-01-02No170 Lbs5 ft9NoNoNo2RFAPro & Farm750,000$750,000$Link
Sergey ZborovskiyWolf Pack (NYR)D211997-02-21Yes197 Lbs6 ft4NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1324.92186 Lbs6 ft01.85711,615$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Ryan BourqueChase De Leo30122
320122
4Chase De Leo10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mat Bodie40122
2Daniel Walcott30122
3Sergey ZborovskiyMat Bodie20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Ryan BourqueChase De Leo40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Mat Bodie60122
2Daniel Walcott40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Chase De Leo40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mat Bodie60122
2Daniel Walcott40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Mat Bodie60122
240122Daniel Walcott40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Chase De Leo40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Mat Bodie60122
2Daniel Walcott40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Mat Bodie
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Mat Bodie
Extra Forwards
Normal PowerPlayPenalty Kill
, Ryan Bourque, , Ryan Bourque
Extra Defensemen
Normal PowerPlayPenalty Kill
Sergey Zborovskiy, Daniel Walcott, Mat BodieSergey ZborovskiyDaniel Walcott, Mat Bodie
Penalty Shots
, , Chase De Leo, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000211000000000001100000021121.0002350019211122517817417861524197114.29%20100.00%030862149.60%22854042.22%12127843.53%485350497141225110
2Americans1010000012-11010000012-10000000000000.0001230019211122517817417862578244125.00%4175.00%030862149.60%22854042.22%12127843.53%485350497141225110
3Barracuda11000000211110000002110000000000021.000246001921112201781741786144413600.00%10100.00%030862149.60%22854042.22%12127843.53%485350497141225110
4Crunch21001000642110000003211000100032141.00061218001921112501781741786431718451516.67%9188.89%030862149.60%22854042.22%12127843.53%485350497141225110
5Devils422000001091211000006512110000044040.50010182800192111211517817417868127357525312.00%14471.43%030862149.60%22854042.22%12127843.53%485350497141225110
6Falcons11000000505000000000001100000050521.00051015011921112341781741786158618500.00%20100.00%030862149.60%22854042.22%12127843.53%485350497141225110
7Gulls1010000034-1000000000001010000034-100.00036900192111225178174178630621216116.67%40100.00%030862149.60%22854042.22%12127843.53%485350497141225110
8IceCaps11000000431110000004310000000000021.000481200192111240178174178624141231300.00%5260.00%030862149.60%22854042.22%12127843.53%485350497141225110
9Monsters20200000510-51010000025-31010000035-200.0005914001921112741781741786568224911327.27%9188.89%030862149.60%22854042.22%12127843.53%485350497141225110
10Senators2010000179-22010000179-20000000000010.25071320001921112441781741786491631407228.57%13284.62%030862149.60%22854042.22%12127843.53%485350497141225110
Since Last GM Reset209901001525021045000012629-310540100026215210.525529614801192111253417817417864271271953981101412.73%781284.62%030862149.60%22854042.22%12127843.53%485350497141225110
12Sound Tigers422000007701010000012-13210000065140.50071118001921112821781741786751834632129.52%15193.33%030862149.60%22854042.22%12127843.53%485350497141225110
Total209901001525021045000012629-310540100026215210.525529614801192111253417817417864271271953981101412.73%781284.62%030862149.60%22854042.22%12127843.53%485350497141225110
Vs Conference17780100145441834000012124-39440100024204170.50045831280119211124441781741786363104171324961212.50%67986.57%030862149.60%22854042.22%12127843.53%485350497141225110

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2021L3529614853442712719539801
All Games
GPWLOTWOTL SOWSOLGFGA
209910015250
Home Games
GPWLOTWOTL SOWSOLGFGA
104500012629
Visitor Games
GPWLOTWOTL SOWSOLGFGA
105410002621
Last 10 Games
WLOTWOTL SOWSOL
370000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1101412.73%781284.62%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
17817417861921112
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
30862149.60%22854042.22%12127843.53%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
485350497141225110


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-021Monsters5Wolf Pack2LBoxScore
2 - 2018-10-0312Wolf Pack2Sound Tigers1WBoxScore
5 - 2018-10-0637Devils1Wolf Pack3WBoxScore
6 - 2018-10-0743Wolf Pack5Falcons0WBoxScore
9 - 2018-10-1061Wolf Pack3Devils1WBoxScore
11 - 2018-10-1276Wolf Pack1Sound Tigers2LBoxScore
13 - 2018-10-1488Senators5Wolf Pack4LXXBoxScore
15 - 2018-10-16103Wolf Pack3Sound Tigers2WBoxScore
16 - 2018-10-17113Wolf Pack3Crunch2WXBoxScore
17 - 2018-10-18124IceCaps3Wolf Pack4WBoxScore
20 - 2018-10-21143Wolf Pack1Devils3LBoxScore
22 - 2018-10-23155Devils4Wolf Pack3LBoxScore
24 - 2018-10-25175Wolf Pack3Gulls4LBoxScore
26 - 2018-10-27186Crunch2Wolf Pack3WBoxScore
30 - 2018-10-31211Senators4Wolf Pack3LBoxScore
33 - 2018-11-03233Barracuda1Wolf Pack2WBoxScore
36 - 2018-11-06259Wolf Pack2Admirals1WBoxScore
37 - 2018-11-07268Sound Tigers2Wolf Pack1LBoxScore
40 - 2018-11-10286Wolf Pack3Monsters5LBoxScore
43 - 2018-11-13302Americans2Wolf Pack1LBoxScore
45 - 2018-11-15321Reign-Wolf Pack-
47 - 2018-11-17337Wolf Pack-Gulls-
48 - 2018-11-18347Wolf Pack-Monsters-
50 - 2018-11-20364Devils-Wolf Pack-
53 - 2018-11-23381Barracuda-Wolf Pack-
55 - 2018-11-25394Wolf Pack-Barracuda-
57 - 2018-11-27411Stars-Wolf Pack-
59 - 2018-11-29426Wolf Pack-Heat-
62 - 2018-12-02445Phantoms-Wolf Pack-
65 - 2018-12-05463Wolf Pack-Pirates-
67 - 2018-12-07479Monsters-Wolf Pack-
69 - 2018-12-09493Wolf Pack-Senators-
70 - 2018-12-10504Wolf Pack-Moose-
72 - 2018-12-12516Icehogs-Wolf Pack-
75 - 2018-12-15533Wolf Pack-Griffins-
76 - 2018-12-16546Bruins-Wolf Pack-
79 - 2018-12-19562Wolf Pack-Rampage-
81 - 2018-12-21573Penguins-Wolf Pack-
83 - 2018-12-23592Wolf Pack-Sound Tigers-
86 - 2018-12-26607Penguins-Wolf Pack-
89 - 2018-12-29628Wolf Pack-Reign-
90 - 2018-12-30641Senators-Wolf Pack-
93 - 2019-01-02662Falcons-Wolf Pack-
95 - 2019-01-04672Wolf Pack-Bears-
97 - 2019-01-06693Gulls-Wolf Pack-
98 - 2019-01-07703Wolf Pack-Comets-
101 - 2019-01-10723Bears-Wolf Pack-
103 - 2019-01-12738Wolf Pack-Moose-
106 - 2019-01-15758Moose-Wolf Pack-
108 - 2019-01-17774Wolf Pack-Wolves-
110 - 2019-01-19789Marlies-Wolf Pack-
112 - 2019-01-21805Wolf Pack-Phantoms-
114 - 2019-01-23820Crunch-Wolf Pack-
116 - 2019-01-25830Wolf Pack-Penguins-
118 - 2019-01-27848Phantoms-Wolf Pack-
121 - 2019-01-30870Wolf Pack-Bruins-
123 - 2019-02-01883Wild-Wolf Pack-
125 - 2019-02-03901Wolf Pack-Bruins-
126 - 2019-02-04907Bears-Wolf Pack-
128 - 2019-02-06928Wolf Pack-Devils-
131 - 2019-02-09946Reign-Wolf Pack-
133 - 2019-02-11955Wolf Pack-Falcons-
136 - 2019-02-14973Wolf Pack-Condors-
137 - 2019-02-15983Sound Tigers-Wolf Pack-
141 - 2019-02-191007Monsters-Wolf Pack-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221031IceCaps-Wolf Pack-
146 - 2019-02-241039Wolf Pack-Americans-
149 - 2019-02-271062Condors-Wolf Pack-
150 - 2019-02-281071Wolf Pack-Falcons-
153 - 2019-03-031090Wolves-Wolf Pack-
154 - 2019-03-041098Wolf Pack-Devils-
158 - 2019-03-081120Griffins-Wolf Pack-
159 - 2019-03-091125Wolf Pack-Checkers-
160 - 2019-03-101133Wolf Pack-Crunch-
165 - 2019-03-151159Wolves-Wolf Pack-
166 - 2019-03-161168Wolf Pack-Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
925,100$ 925,100$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
389,952$ 0$ 231,532$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 9,024$ 1,128,000$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018209901001525021045000012629-31054010002621521529614801192111253417817417864271271953981101412.73%781284.62%030862149.60%22854042.22%12127843.53%485350497141225110
Total Regular Season209901001525021045000012629-31054010002621521529614801192111253417817417864271271953981101412.73%781284.62%030862149.60%22854042.22%12127843.53%485350497141225110