Bruins

GP: 19 | W: 8 | L: 9 | OTL: 2 | P: 18
GF: 18 | GA: 21 | PP%: 8.64% | PK%: 83.33%
GM : Mika Laakso | Morale : 50 | Team Overall : 56
Next Games vs Barracuda
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Andrew PoturalskiX98.007468896268849062785861645844446550610
2Colby CaveXX96.007368856768839059745756625344446250600
3Janne Kuokkanen (R)XXX97.007269807069666762786457635444446350600
4Anthony Greco (R)XX99.007062886662828862505465626244446550600
5Ben SextonX99.007066806766616163795963626044446350590
6Anton BlidhXX98.007773856973808755504956645345456150590
7Ryan LombergX98.007570866770758057505357635444446150590
8Aleksi Saarela (R)X100.007668956668585861765265646244446450580
9Seth GriffithX100.006541907367578064265559522553536150580
10Kalle KossilaXXX100.006942997564538060666059512545456150580
11Jakob Forsbacka Karlsson (R)X100.007368866468646560755660635744446250580
12Cameron Hughes (R)X100.007064846564515251645444594244445450530
13Zach Trotman (R)X99.008380897180515251253946684453535650590
14Andrew Nielsen (R)X99.006777426877677151254641573944445150570
15Emil Johansson (R)X99.007469876869657046253740603844445250560
16Chris CastoX99.007976876476515346253739623744445150550
17Kris BindulisX100.007973936573505244253439623744445150550
18Joonas Lyytinen (R)X100.006458776358586246253640553844444950520
Scratches
1Austin CzarnikX97.006340998058588762567055602550506550610
2Ryan Fitzgerald (R)X100.006661796461676960755362595944446250570
3Joshua WinquistX100.007367876167616261505760635744446250570
4Justin HickmanXX100.007880746580515153664556635344445850550
5Jesse Gabrielle (R)X100.007973936873586149504746634444445550540
6Clarke MacArthurX100.007242877062323050506046644244445850530
7Tyler RandellX100.006772556472687448504446574446465350530
8Mikkel Aagaard (R)XXX100.006864786464484851644156585344445550520
9Tony TurgeonX100.007686516886434444453141603944444950490
10Luc Snuggerud (R)X91.677471826871505053254646614444445550560
11Dmitry Osipov (R)X100.008384816584495145253539643744445150560
12Jeremy Lauzon (R)X100.007675786575586245253639603744445150550
13Linus Arnesson (R)X100.007569896769525543254139593744445050540
TEAM AVERAGE99.02736782677060655449495161454545575056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Niklas Svedberg (R)100.00597594685663526256553045455950590
2Adam Carlson (R)100.00524961705352525753533044445350530
Scratches
1Jack Flinn100.00454455924343505246473044444750510
2Ivan Kulbakov (R)100.00476075674247505445463044444950500
TEAM AVERAGE100.0051577174495151565050304444525053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Charlie Huddy63707259454659CAN554750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Colby CaveBruins (BOS)C/LW1928102100233623008.70%537619.810111360110350064.06%25600000.5300000102
2Anton BlidhBruins (BOS)LW/RW1963941604130290020.69%834218.031013150000242050.00%1200000.5300000232
3Seth GriffithBruins (BOS)RW19358620623230013.04%224512.9000004000011037.50%800000.6500000100
4Janne KuokkanenBruins (BOS)C/LW/RW1943731002337220018.18%436919.441016671121551050.00%2200010.3800000110
5Luc SnuggerudBruins (BOS)D1615626023650020.00%1730919.32134445000065000.00%000000.3900000101
6Jussi JokinenBruinsRW514530021040025.00%08416.9601108000000056.94%7200001.1800000010
7Austin CzarnikBruins (BOS)C18224-640747160012.50%437620.930113580003880046.96%23000000.2111000011
8Anthony GrecoBruins (BOS)LW/RW19044-5100171922000.00%128314.9202211700000270041.51%5300000.2800000010
9Emil JohanssonBruins (BOS)D19134516023360016.67%1439820.99112345000055000.00%000000.2000000011
10Ben SextonBruins (BOS)C19123-140222724004.17%424312.830115330001530054.25%15300000.2501000011
11Daniel SprongBruinsRW52133801111100020.00%110020.12000000000230045.45%4400000.6000000010
12Colton HargroveBruinsLW911201201018100010.00%515817.630116341011280154.55%3300000.2500000100
13Kalle KossilaBruins (BOS)C/LW/RW10202-14041060033.33%0828.20101118000000050.00%200000.4900000110
14Ryan LombergBruins (BOS)LW19112-240121680012.50%21568.2600013000000060.00%2500000.2500000010
15Dmitry OsipovBruins (BOS)D81121160102100100.00%414418.05101123000027000.00%000000.2800000100
16Andrew NielsenBruins (BOS)D19112-732053950020.00%1043322.83101165000070100.00%000000.0900000010
17Kris BindulisBruins (BOS)D18022920027122000.00%1231717.65000122000049000.00%000000.1300000000
18Zac RinaldoBruinsLW/RW4011-114012109000.00%15714.3601101000000000.00%200000.3500000000
19Zach TrotmanBruins (BOS)D19011-1125529107000.00%1540521.33011361000064000.00%000000.0500010000
20Jakob Forsbacka KarlssonBruins (BOS)C18101-1003770014.29%1955.32000224000001050.00%2400000.2100000100
21Joonas LyytinenBruins (BOS)D3011000100000.00%03210.910000700003000.00%000000.6100000000
22Andrew PoturalskiBruins (BOS)C14000-4120123026000.00%232923.550005580002500059.81%31100000.0022000000
23Chris CastoBruins (BOS)D1100011001034000.00%817415.85000218000023000.00%000000.0000000000
24Aleksi SaarelaBruins (BOS)C11000020110000.00%0161.47000040000000100.00%300000.0000000000
25Jeremy LauzonBruins (BOS)D1000000010000.00%21515.980000100001000.00%000000.0000000000
26Cameron HughesBruins (BOS)C1000000000000.00%000.22000000000000100.00%100000.0000000000
Team Total or Average342304979023753823782690011.15%122555216.23713205973922487536155.48%125100010.283401010138
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Niklas SvedbergBruins (BOS)104510.8952.5252402222090000.0000109111
2Adam CarlsonBruins (BOS)114410.9101.8162901192100001.0005910100
Team Total or Average218920.9022.13115403414190001.00051919211


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam CarlsonBruins (BOS)D241994-02-13Yes175 Lbs6 ft3NoNoNo1ELCPro & Farm795,000$Link
Aleksi SaarelaBruins (BOS)C211997-01-07Yes198 Lbs5 ft11NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Andrew NielsenBruins (BOS)D221996-11-13Yes227 Lbs6 ft4NoNoNo2ELCPro & Farm750,000$750,000$Link
Andrew PoturalskiBruins (BOS)C241994-01-14No181 Lbs5 ft10NoNoNo2ELCPro & Farm850,000$850,000$Link
Anthony GrecoBruins (BOS)LW/RW251993-09-30Yes172 Lbs5 ft10NoNoNo2ELCPro & Farm625,000$625,000$Link
Anton BlidhBruins (BOS)LW/RW231995-03-14No201 Lbs6 ft0NoNoNo1ELCPro & Farm500,000$Link
Austin CzarnikBruins (BOS)C251992-12-12No160 Lbs5 ft9NoNoNo1ELCPro & Farm675,000$Link
Ben SextonBruins (BOS)C271991-05-06No196 Lbs5 ft11NoNoNo2RFAPro & Farm725,000$725,000$Link
Cameron HughesBruins (BOS)C221996-10-09Yes174 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Chris CastoBruins (BOS)D261991-12-27No200 Lbs6 ft1NoNoNo1ELCPro & Farm650,000$Link
Clarke MacArthurBruins (BOS)LW331985-04-06No192 Lbs6 ft0NoNoNo2UFAPro & Farm4,650,000$4,650,000$Link
Colby CaveBruins (BOS)C/LW231994-12-26No200 Lbs6 ft1NoNoNo1ELCPro & Farm655,000$Link
Dmitry OsipovBruins (BOS)D221996-10-04Yes229 Lbs6 ft4NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Emil JohanssonBruins (BOS)D221996-05-06Yes190 Lbs5 ft11NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Ivan KulbakovBruins (BOS)D221996-09-18Yes183 Lbs6 ft0NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Jack FlinnBruins (BOS)D221995-12-20No223 Lbs6 ft8NoNoNo2ELCPro & Farm625,000$625,000$Link
Jakob Forsbacka KarlssonBruins (BOS)C221996-10-31Yes184 Lbs6 ft1NoNoNo3ELCPro & Farm750,000$750,000$750,000$Link
Janne KuokkanenBruins (BOS)C/LW/RW201998-05-25Yes188 Lbs6 ft1NoNoNo3ELCPro & Farm750,000$750,000$750,000$Link
Jeremy LauzonBruins (BOS)D211997-04-28Yes204 Lbs6 ft1NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Jesse GabrielleBruins (BOS)LW211997-06-17Yes204 Lbs5 ft11NoNoNo3ELCPro & Farm600,000$600,000$600,000$Link
Joonas LyytinenBruins (BOS)D231995-04-04Yes172 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Joshua WinquistBruins (BOS)LW251993-09-06No185 Lbs5 ft11NoNoNo2ELCPro & Farm625,000$625,000$Link
Justin HickmanBruins (BOS)C/RW241994-03-18No224 Lbs6 ft2NoNoNo1ELCPro & Farm792,000$Link
Kalle KossilaBruins (BOS)C/LW/RW251993-04-14No175 Lbs5 ft11NoNoNo2ELCPro & Farm1,450,000$1,450,000$Link
Kris BindulisBruins (BOS)D231995-09-17No190 Lbs6 ft3NoNoNo3ELCPro & Farm792,500$792,500$792,500$Link
Linus ArnessonBruins (BOS)D241994-09-21Yes188 Lbs6 ft1NoNoNo1ELCPro & Farm800,000$Link
Luc Snuggerud (Out of Payroll)Bruins (BOS)D231995-09-18Yes184 Lbs6 ft0NoNoNo2ELCPro & Farm500,000$500,000$Link
Mikkel AagaardBruins (BOS)C/LW/RW231995-10-27Yes176 Lbs5 ft11NoNoNo2ELCPro & Farm625,000$625,000$Link
Niklas SvedbergBruins (BOS)LW/RW291989-09-04Yes176 Lbs6 ft2NoNoNo1UFAPro & Farm500,000$Link
Ryan FitzgeraldBruins (BOS)C241994-10-19Yes172 Lbs5 ft9NoNoNo3ELCPro & Farm600,000$600,000$600,000$Link
Ryan LombergBruins (BOS)LW231994-12-09No190 Lbs5 ft9NoNoNo2ELCPro & Farm710,000$710,000$Link
Seth GriffithBruins (BOS)RW251993-01-03No191 Lbs5 ft9NoNoNo1ELCPro & Farm650,000$Link
Tony TurgeonBruins (BOS)C221996-02-24No231 Lbs6 ft4NoNoNo2ELCPro & Farm625,000$625,000$Link
Tyler RandellBruins (BOS)RW271991-06-14No198 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$Link
Zach TrotmanBruins (BOS)D281990-08-25Yes216 Lbs6 ft3NoNoNo1UFAPro & Farm650,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3523.86193 Lbs6 ft02.03797,700$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anton BlidhAndrew PoturalskiJanne Kuokkanen40122
2Anthony GrecoRyan LombergColby Cave30122
3Anton BlidhColby CaveSeth Griffith20122
4Ryan LombergBen SextonAndrew Poturalski10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Zach TrotmanAndrew Nielsen40122
2Emil JohanssonChris Casto30122
3Emil JohanssonKris Bindulis20122
4Zach TrotmanAndrew Nielsen10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Andrew PoturalskiColby CaveJanne Kuokkanen60122
2Anthony GrecoRyan LombergBen Sexton40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Zach TrotmanAndrew Nielsen60122
2Emil JohanssonKris Bindulis40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Anthony GrecoAndrew Poturalski60122
2Colby CaveJanne Kuokkanen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Zach TrotmanAndrew Nielsen60122
2Emil JohanssonKris Bindulis40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Janne Kuokkanen60122Zach TrotmanAndrew Nielsen60122
2Colby Cave40122Emil JohanssonKris Bindulis40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Anthony GrecoBen Sexton60122
2Colby CaveJanne Kuokkanen40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Zach TrotmanAndrew Nielsen60122
2Kris BindulisEmil Johansson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Colby CaveAndrew PoturalskiJanne KuokkanenZach TrotmanAndrew Nielsen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Colby CaveAndrew PoturalskiJanne KuokkanenZach TrotmanAndrew Nielsen
Extra Forwards
Normal PowerPlayPenalty Kill
Jakob Forsbacka Karlsson, Colby Cave, Ben SextonJakob Forsbacka Karlsson, Colby CaveBen Sexton
Extra Defensemen
Normal PowerPlayPenalty Kill
Emil Johansson, Kris Bindulis, Andrew NielsenEmil JohanssonKris Bindulis, Zach Trotman
Penalty Shots
Ben Sexton, Andrew Poturalski, Colby Cave, Janne Kuokkanen, Anthony Greco
Goalie
#1 : Adam Carlson, #2 : Niklas Svedberg


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans1000010023-11000010023-10000000000010.5002460011712315868594823512245120.00%6183.33%025244456.76%28052753.13%16228057.86%432292488141234112
2Barracuda2110000037-42110000037-40000000000020.50035800117123288685948621324357114.29%12466.67%025244456.76%28052753.13%16228057.86%432292488141234112
3Comets1010000014-3000000000001010000014-300.000123001171231786859482551222800.00%6183.33%025244456.76%28052753.13%16228057.86%432292488141234112
4Condors1010000002-2000000000001010000002-200.0000000011712378685948154818100.00%3166.67%025244456.76%28052753.13%16228057.86%432292488141234112
5Crunch1010000012-11010000012-10000000000000.00012300117123148685948221814500.00%40100.00%025244456.76%28052753.13%16228057.86%432292488141234112
6Falcons11000000303110000003030000000000021.0003580111712316868594816216285240.00%70100.00%025244456.76%28052753.13%16228057.86%432292488141234112
7Icehogs1010000002-21010000002-20000000000000.000000001171231886859481751223400.00%6266.67%025244456.76%28052753.13%16228057.86%432292488141234112
8Moose1010000013-2000000000001010000013-200.000123001171231786859482813631400.00%3166.67%025244456.76%28052753.13%16228057.86%432292488141234112
9Penguins1000010023-1000000000001000010023-110.5002460011712316868594822710218112.50%30100.00%025244456.76%28052753.13%16228057.86%432292488141234112
10Phantoms1010000012-11010000012-10000000000000.00012300117123228685948311510186116.67%5180.00%025244456.76%28052753.13%16228057.86%432292488141234112
11Reign41200010710-3211000005412010001026-440.50079160111712346868594886247477900.00%35682.86%225244456.76%28052753.13%16228057.86%432292488141234112
Since Last GM Reset1969002203241-91145001101821-3824001101420-6180.4743249810311712326986859484191222373828178.64%1081883.33%225244456.76%28052753.13%16228057.86%432292488141234112
13Sound Tigers22000000826000000000002200000082641.0008101800117123268685948421531388112.50%120100.00%025244456.76%28052753.13%16228057.86%432292488141234112
Total1969002203241-91145001101821-3824001101420-6180.4743249810311712326986859484191222373828178.64%1081883.33%225244456.76%28052753.13%16228057.86%432292488141234112
Vs Conference1356001102629-3734000001315-2622001101314-1130.5002639650211712318586859483099017926252611.54%811285.19%225244456.76%28052753.13%16228057.86%432292488141234112
Vs Division2340001035-22320000035-20020001000082.00036900117123298685948456203810110.00%10190.00%025244456.76%28052753.13%16228057.86%432292488141234112
17Wild21000010312210000103120000000000041.00034701117123278685948301314331100.00%6183.33%025244456.76%28052753.13%16228057.86%432292488141234112

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1918SOW132498126941912223738203
All Games
GPWLOTWOTL SOWSOLGFGA
196902203241
Home Games
GPWLOTWOTL SOWSOLGFGA
114501101821
Visitor Games
GPWLOTWOTL SOWSOLGFGA
82401101420
Last 10 Games
WLOTWOTL SOWSOL
350110
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
8178.64%1081883.33%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
8685948117123
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
25244456.76%28052753.13%16228057.86%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
432292488141234112


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0313Barracuda1Bruins2WBoxScore
3 - 2018-10-0423Bruins0Reign5LBoxScore
6 - 2018-10-0739Reign4Bruins0LBoxScore
9 - 2018-10-1065Falcons0Bruins3WBoxScore
13 - 2018-10-1494Wild1Bruins2WBoxScore
15 - 2018-10-16104Bruins2Reign1WXXBoxScore
16 - 2018-10-17114Bruins2Penguins3LXBoxScore
17 - 2018-10-18125Bruins1Moose3LBoxScore
19 - 2018-10-20140Phantoms2Bruins1LBoxScore
22 - 2018-10-23161Bruins5Sound Tigers1WBoxScore
24 - 2018-10-25171Americans3Bruins2LXBoxScore
27 - 2018-10-28191Barracuda6Bruins1LBoxScore
31 - 2018-11-01218Reign0Bruins5WBoxScore
33 - 2018-11-03236Bruins0Condors2LBoxScore
35 - 2018-11-05250Bruins3Sound Tigers1WBoxScore
36 - 2018-11-06255Icehogs2Bruins0LBoxScore
39 - 2018-11-09282Crunch2Bruins1LBoxScore
41 - 2018-11-11292Bruins1Comets4LBoxScore
44 - 2018-11-14313Wild0Bruins1WXXBoxScore
48 - 2018-11-18342Senators-Bruins-
50 - 2018-11-20358Bruins-Phantoms-
52 - 2018-11-22371Bruins-Wolves-
53 - 2018-11-23379Icehogs-Bruins-
56 - 2018-11-26404Checkers-Bruins-
58 - 2018-11-28419Bruins-Penguins-
61 - 2018-12-01436Moose-Bruins-
63 - 2018-12-03447Bruins-Reign-
65 - 2018-12-05465Falcons-Bruins-
67 - 2018-12-07480Bruins-Barracuda-
69 - 2018-12-09492Bruins-Wild-
70 - 2018-12-10500Condors-Bruins-
73 - 2018-12-13524Bruins-IceCaps-
74 - 2018-12-14530Americans-Bruins-
76 - 2018-12-16546Bruins-Wolf Pack-
78 - 2018-12-18561Falcons-Bruins-
83 - 2018-12-23591Bears-Bruins-
85 - 2018-12-25598Bruins-Falcons-
87 - 2018-12-27619Bruins-Bears-
88 - 2018-12-28623Devils-Bruins-
92 - 2019-01-01648Bruins-Senators-
93 - 2019-01-02656Admirals-Bruins-
95 - 2019-01-04676Bruins-Crunch-
96 - 2019-01-05684Heat-Bruins-
99 - 2019-01-08710Bruins-Senators-
100 - 2019-01-09716Moose-Bruins-
103 - 2019-01-12741Bruins-Devils-
104 - 2019-01-13746Penguins-Bruins-
108 - 2019-01-17770Bruins-Penguins-
109 - 2019-01-18779Reign-Bruins-
111 - 2019-01-20800Bruins-Crunch-
112 - 2019-01-21807Gulls-Bruins-
117 - 2019-01-26839Wolves-Bruins-
119 - 2019-01-28856Bruins-Gulls-
121 - 2019-01-30870Wolf Pack-Bruins-
123 - 2019-02-01881Bruins-Bears-
125 - 2019-02-03901Wolf Pack-Bruins-
126 - 2019-02-04910Bruins-Moose-
127 - 2019-02-05920Bruins-Barracuda-
129 - 2019-02-07934Phantoms-Bruins-
132 - 2019-02-10951Bruins-Reign-
134 - 2019-02-12964Bruins-Monsters-
135 - 2019-02-13970Barracuda-Bruins-
138 - 2019-02-16987Bruins-Devils-
140 - 2019-02-181001Comets-Bruins-
142 - 2019-02-201012Bruins-Gulls-
143 - 2019-02-211025Bruins-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231036Sound Tigers-Bruins-
147 - 2019-02-251051Bruins-Falcons-
148 - 2019-02-261058Bruins-Griffins-
151 - 2019-03-011074Bruins-Pirates-
152 - 2019-03-021080Monsters-Bruins-
155 - 2019-03-051103Wolves-Bruins-
158 - 2019-03-081118Bruins-Stars-
160 - 2019-03-101137Monsters-Bruins-
163 - 2019-03-131152Bruins-Moose-
166 - 2019-03-161166Rampage-Bruins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,791,950$ 2,803,728$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
943,619$ 0$ 745,841$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 20,958$ 2,619,750$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20181969002203241-91145001101821-3824001101420-6183249810311712326986859484191222373828178.64%1081883.33%225244456.76%28052753.13%16228057.86%432292488141234112
Total Regular Season1969002203241-91145001101821-3824001101420-6183249810311712326986859484191222373828178.64%1081883.33%225244456.76%28052753.13%16228057.86%432292488141234112