Admirals

GP: 75 | W: 25 | L: 43 | OTL: 7 | P: 57
GF: 126 | GA: 178 | PP%: 10.23% | PK%: 85.56%
GM : Pat Blais | Morale : 50 | Team Overall : 59
Next Games #1170 vs Wolves
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Daniel WinnikXXX99.006152896977669458486658802580836650650
2Chris StewartXX100.007378857385578458346071588276786750640
3Chris MuellerX100.007975876575737663796260665744446550610
4Jordan SzwarzX100.007143946872598060627055672548486450610
5Miikka SalomakiXX100.008545837770565562366056722558596350610
6Peter CehlarikX100.007775816775666762505862655945456450600
7Wade MeganX100.007571846871808659745856635344446350600
8Max GortzX100.007874876674748054505647644544445850580
9Brett Pollock (R)XX100.007773876873666957505158645544446150580
10Felix GirardX100.006866726766808851644354585144445750560
11Dalton ProutX100.008785926985555749253940723864655450620
12Matt BartkowskiX100.008245926972625853255347682564655950620
13Tommy CrossX100.007477687177818853254943614144445650610
14Anthony BitettoX100.007865767078625456254648642556575750600
15Cameron GaunceX100.007377656777748051254641613945455450590
16Griffin ReinhartX100.008281856481687446253740643847485350590
17Joel HanleyX100.007267825567748052254840613846465450570
Scratches
1Joel WardX100.006943887381628258596159716378826450640
2Tyler Moy (R)XX100.007971966271667150634747634544445650550
3Justin Kirkland (R)XX100.007568906468697550634747614544445550550
4Andrew CampbellX100.007878786878758345253340623847475350590
5Clayton StonerX100.009046476868323050254845753744445350560
6Andre BenoitX100.007369816569606449254240603844445250560
7Jonathan Diaby (R)X100.007682626082545646254542614044445150550
TEAM AVERAGE99.96766781677565725442515065435252585059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anthony Peters100.00556784745258536054543044445650570
2Marek Mazanec100.00556480795356505852523046465550560
Scratches
1Jeff Zatkoff100.00485164704653505454533044445150520
TEAM AVERAGE100.0053617674505651575353304545545055
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dean Evason44465958574852CAN501800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jordan SzwarzAdmirals (NAS)RW72152439-41203910883132818.07%9133818.593691721800011014249.19%12400000.5812000533
2Chris MuellerAdmirals (NAS)C74151732-7601094158128165611.72%7140719.025510252300001985061.82%123900000.4503101144
3Peter CehlarikAdmirals (NAS)LW75141529-17540106110122283911.48%9132617.69336181271012812251.19%8400000.4400000151
4Daniel WinnikAdmirals (NAS)C/LW/RW456212776027138908256.67%12101822.640441714202232000151.57%102200000.5317000133
5Wade MeganAdmirals (NAS)C7591726-124009015811813447.63%8128917.20145141050000610159.92%99800000.4000000215
6Joel WardAdmirals (NAS)RW59121224-422071102103112711.65%12118620.122461919010121982150.64%15600000.40210000633
7Tommy CrossAdmirals (NAS)D755172208410151424161012.20%63170022.674812292500000292000.00%100000.2600002121
8Anthony BitettoAdmirals (NAS)D733141707751334237878.11%53154621.19123252190111239000.00%000000.2200000141
9Chris StewartAdmirals (NAS)LW/RW568917-342069619223438.70%6108119.312242017400041942240.28%21100000.3139000313
10Miikka SalomakiAdmirals (NAS)LW/RW5051015-540093977913316.33%1290918.18336141540001871042.86%7700000.3335000302
11Dalton ProutAdmirals (NAS)D564913-3841010339276814.81%47117020.91235181630000188000.00%000000.2200011011
12Felix GirardAdmirals (NAS)C738412-11220557661102113.11%580210.991013360000763156.80%58100000.3000000321
13Max GortzAdmirals (NAS)RW454711-32605253381810.53%1179217.620001440001600137.31%6700000.2800000111
14Matt BartkowskiAdmirals (NAS)D293710-614037252741511.11%1762021.4023520870000109100.00%000000.3200000111
15Brett PollockAdmirals (NAS)LW/RW424610-126044664912348.16%565515.611125380000450137.74%5300000.3000000111
16Cameron GaunceAdmirals (NAS)D75099-69801733629580.00%67150320.05033151760000176000.00%000000.1200000111
17Justin KirklandAdmirals (NAS)C/LW36145-21401729163166.25%237710.48000050001150055.32%4700000.2700000000
18Andrew CampbellAdmirals (NAS)D34224-114610589162112.50%2966019.411127650000800150.00%400000.1200002002
19Jonathan DiabyAdmirals (NAS)D48033-11742086138020.00%1969014.39000426000093000.00%500000.0900013001
20Ben StreetPredatorsC4022-1400127000.00%18120.270002150001100061.02%5900000.4900000000
21Lauri KorpikoskiPredatorsLW/RW11122000050020.00%12121.5001103000011050.00%800001.8600000010
22Joel HanleyAdmirals (NAS)D51022-18280621910140.00%2281716.03011137000090000.00%300000.0500000000
23Clayton StonerAdmirals (NAS)D1501101802992000.00%821814.54000016000021000.00%000000.0900000000
24Griffin ReinhartAdmirals (NAS)D9101016015241025.00%814516.200000200008000.00%000000.1400000000
Team Total or Average1172120213333-1278876516041404119218442710.07%4332136418.233154852742531235182532211355.60%473900000.311036129313435
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marek MazanecAdmirals (NAS)51173120.8982.3329364511411190130.842195025444
2Anthony PetersAdmirals (NAS)2581250.8982.07150740525100000.47621250410
3Jeff ZatkoffAdmirals (NAS)40000.9491.18102002390000.0000050000
Team Total or Average80254370.8992.2245458516816680130.650407575854


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Andre BenoitAdmirals (NAS)D351984-01-06No191 Lbs5 ft11NoNoNo3UFAPro & Farm500,000$0$0$NoLink
Andrew CampbellAdmirals (NAS)D311988-02-03No205 Lbs6 ft4NoNoNo3UFAPro & Farm500,000$0$0$NoLink
Anthony BitettoAdmirals (NAS)D281990-07-14No210 Lbs6 ft1NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Anthony PetersAdmirals (NAS)G281990-12-31No196 Lbs6 ft1NoNoNo3UFAPro & Farm500,000$0$0$NoLink
Brett PollockAdmirals (NAS)LW/RW231996-03-17Yes195 Lbs6 ft3NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Cameron GaunceAdmirals (NAS)D291990-03-19No210 Lbs6 ft1NoNoNo1UFAPro & Farm575,000$0$0$NoLink
Chris MuellerAdmirals (NAS)C331986-03-06No209 Lbs5 ft11NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Chris StewartAdmirals (NAS)LW/RW311987-10-30No239 Lbs6 ft2NoNoNo2UFAPro & Farm1,500,000$0$0$NoLink
Clayton StonerAdmirals (NAS)D341985-02-19No216 Lbs6 ft4NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Dalton ProutAdmirals (NAS)D291990-03-13No230 Lbs6 ft3NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Daniel WinnikAdmirals (NAS)C/LW/RW341985-03-06No206 Lbs6 ft2NoNoNo1UFAPro & Farm2,150,000$0$0$NoLink
Felix GirardAdmirals (NAS)C241994-05-09No197 Lbs5 ft10NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Griffin ReinhartAdmirals (NAS)D251994-01-24No212 Lbs6 ft4NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Jeff ZatkoffAdmirals (NAS)G311987-06-09No179 Lbs6 ft2NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Joel HanleyAdmirals (NAS)D271991-06-08No193 Lbs6 ft0NoNoNo1RFAPro & Farm550,000$0$0$NoLink
Joel WardAdmirals (NAS)RW381980-12-02No225 Lbs6 ft1NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Jonathan DiabyAdmirals (NAS)D241994-11-16Yes218 Lbs6 ft5NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Jordan SzwarzAdmirals (NAS)RW271991-05-14No200 Lbs5 ft11NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Justin KirklandAdmirals (NAS)C/LW221996-08-01Yes183 Lbs6 ft1NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Marek MazanecAdmirals (NAS)G271991-07-17No187 Lbs6 ft4NoNoNo2RFAPro & Farm550,000$0$0$NoLink
Matt BartkowskiAdmirals (NAS)D301988-06-03No196 Lbs6 ft1NoNoNo2UFAPro & Farm650,000$0$0$NoLink
Max GortzAdmirals (NAS)RW261993-01-28No196 Lbs6 ft3NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Miikka SalomakiAdmirals (NAS)LW/RW261993-03-08No203 Lbs5 ft11NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Peter CehlarikAdmirals (NAS)LW231995-05-12No202 Lbs6 ft2NoNoNo2ELCPro & Farm700,000$0$0$NoLink
Tommy CrossAdmirals (NAS)D291989-09-11No205 Lbs6 ft3NoNoNo1UFAPro & Farm550,000$0$0$NoLink
Tyler MoyAdmirals (NAS)C/RW231995-07-18Yes201 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Wade MeganAdmirals (NAS)C281990-07-21No192 Lbs6 ft1NoNoNo1UFAPro & Farm850,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2728.33204 Lbs6 ft21.89745,370$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Chris StewartDaniel WinnikMiikka Salomaki40122
2Peter CehlarikChris MuellerJordan Szwarz30122
3Brett PollockWade MeganMax Gortz20122
4Daniel WinnikFelix GirardChris Stewart10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dalton ProutMatt Bartkowski40122
2Tommy CrossAnthony Bitetto30122
3Griffin ReinhartCameron Gaunce20122
4Joel HanleyDalton Prout10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Chris StewartDaniel WinnikMiikka Salomaki60122
2Peter CehlarikChris MuellerJordan Szwarz40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dalton ProutMatt Bartkowski60122
2Tommy CrossAnthony Bitetto40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Daniel WinnikChris Stewart60122
2Miikka SalomakiJordan Szwarz40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dalton ProutMatt Bartkowski60122
2Tommy CrossAnthony Bitetto40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Daniel Winnik60122Dalton ProutMatt Bartkowski60122
2Chris Stewart40122Tommy CrossAnthony Bitetto40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Daniel WinnikChris Stewart60122
2Miikka SalomakiJordan Szwarz40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dalton ProutMatt Bartkowski60122
2Tommy CrossAnthony Bitetto40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Chris StewartDaniel WinnikMiikka SalomakiDalton ProutMatt Bartkowski
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Chris StewartDaniel WinnikMiikka SalomakiDalton ProutMatt Bartkowski
Extra Forwards
Normal PowerPlayPenalty Kill
Wade Megan, Brett Pollock, Max GortzWade Megan, Brett PollockMax Gortz
Extra Defensemen
Normal PowerPlayPenalty Kill
Griffin Reinhart, Cameron Gaunce, Joel HanleyGriffin ReinhartCameron Gaunce, Joel Hanley
Penalty Shots
Daniel Winnik, Chris Stewart, Miikka Salomaki, Jordan Szwarz, Chris Mueller
Goalie
#1 : Anthony Peters, #2 : Marek Mazanec


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans3120000035-22110000034-11010000001-120.3333690044393910414133804204385205483900.00%24195.83%11054191655.01%1124205254.78%584102656.92%181412451813544927468
2Barracuda1010000024-21010000024-20000000000000.000235104439391014413380420431878245120.00%40100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
3Bears1010000002-2000000000001010000002-200.000000004439391010413380420431561126400.00%30100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
4Bruins11000000211000000000001100000021121.000246004439391023413380420431924145120.00%20100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
5Checkers3030000049-52020000037-41010000012-100.000481210443939105041338042043772726868225.00%11372.73%01054191655.01%1124205254.78%584102656.92%181412451813544927468
6Comets3020000138-52020000015-41000000123-110.16735800443939104941338042043491128751317.69%14285.71%01054191655.01%1124205254.78%584102656.92%181412451813544927468
7Condors32100000523110000003032110000022040.6675101502443939106141338042043481936501417.14%17288.24%01054191655.01%1124205254.78%584102656.92%181412451813544927468
8Crunch2020000047-3000000000002020000047-300.0004711004439391029413380420434382330500.00%80100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
9Devils1010000023-11010000023-10000000000000.000235004439391022413380420432776194125.00%3166.67%01054191655.01%1124205254.78%584102656.92%181412451813544927468
10Falcons2020000025-31010000012-11010000013-200.000235004439391029413380420433942346800.00%9277.78%11054191655.01%1124205254.78%584102656.92%181412451813544927468
11Griffins5120002010100310000208532020000025-360.6001016260044393910844133804204311323541022414.17%26484.62%01054191655.01%1124205254.78%584102656.92%181412451813544927468
12Gulls11000000413000000000001100000041321.00048120044393910164133804204318511194125.00%3166.67%01054191655.01%1124205254.78%584102656.92%181412451813544927468
13Heat41200001510-53120000048-41000000112-130.375591400443939106541338042043872460821900.00%21576.19%01054191655.01%1124205254.78%584102656.92%181412451813544927468
14IceCaps321000004401010000003-32200000041340.667471101443939104041338042043692530611516.67%14192.86%01054191655.01%1124205254.78%584102656.92%181412451813544927468
15Icehogs51200002712-5210000014403020000138-540.4007132010443939106041338042043109256411214214.29%31583.87%01054191655.01%1124205254.78%584102656.92%181412451813544927468
16Marlies32100000642211000004311100000021140.6676101601443939105141338042043327324811218.18%16287.50%01054191655.01%1124205254.78%584102656.92%181412451813544927468
17Monsters1010000012-11010000012-10000000000000.000112004439391012413380420431668256116.67%40100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
18Moose2010001068-22010001068-20000000000020.500681400443939102741338042043612132605120.00%15473.33%01054191655.01%1124205254.78%584102656.92%181412451813544927468
19Penguins11000000321000000000001100000032121.0003690044393910264133804204318610256233.33%40100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
20Phantoms11000000321000000000001100000032121.0003690044393910154133804204328612175120.00%50100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
21Pirates3030000049-51010000012-12020000037-400.00045900443939103041338042043112274266900.00%19194.74%01054191655.01%1124205254.78%584102656.92%181412451813544927468
22Rampage513000011115-43110000110912020000016-530.30011203100443939101064133804204312526469524312.50%22386.36%01054191655.01%1124205254.78%584102656.92%181412451813544927468
23Reign1010000013-2000000000001010000013-200.00012300443939101841338042043171815200.00%4250.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
24Senators10000010211000000000001000001021121.000224004439391074133804204324513224125.00%30100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
25Sound Tigers2020000026-41010000023-11010000003-300.0002460044393910344133804204335524537228.57%120100.00%01054191655.01%1124205254.78%584102656.92%181412451813544927468
26Stars40300001512-72020000026-42010000136-310.12558130044393910804133804204310725349520315.00%15473.33%01054191655.01%1124205254.78%584102656.92%181412451813544927468
Total75214300047126178-52371021000336787-20381122000145991-32570.3801262173433544393910121941338042043167144290316273033110.23%3815585.56%21054191655.01%1124205254.78%584102656.92%181412451813544927468
28Wild32100000550220000004221010000013-240.667581300443939104041338042043502048341218.33%13192.31%01054191655.01%1124205254.78%584102656.92%181412451813544927468
29Wolf Pack1010000012-11010000012-10000000000000.000123004439391015413380420432531424200.00%7185.71%01054191655.01%1124205254.78%584102656.92%181412451813544927468
30Wolves5310000113112210000015233210000089-170.700132235014439391010741338042043113429612416212.50%30583.33%01054191655.01%1124205254.78%584102656.92%181412451813544927468
31Wolves41300000613-71010000003-331200000610-420.2506111700443939105841338042043922946952300.00%22577.27%01054191655.01%1124205254.78%584102656.92%181412451813544927468
_Since Last GM Reset75214300047126178-52371021000336787-20381122000145991-32570.3801262173433544393910121941338042043167144290316273033110.23%3815585.56%21054191655.01%1124205254.78%584102656.92%181412451813544927468
_Vs Conference5617300002791129-38291014000235263-1127716000043966-27450.4029115824925443939109224133804204312683506961208231198.23%2954485.08%11054191655.01%1124205254.78%584102656.92%181412451813544927468
_Vs Division19711000242846-18942000231122-111039000011724-7220.5792851791244393910310413380420433681002204068844.55%941979.79%11054191655.01%1124205254.78%584102656.92%181412451813544927468

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7557L212621734312191671442903162735
All Games
GPWLOTWOTL SOWSOLGFGA
7521430047126178
Home Games
GPWLOTWOTL SOWSOLGFGA
37102100336787
Visitor Games
GPWLOTWOTL SOWSOLGFGA
38112200145991
Last 10 Games
WLOTWOTL SOWSOL
360001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3033110.23%3815585.56%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4133804204344393910
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1054191655.01%1124205254.78%584102656.92%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
181412451813544927468


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0415Rampage1Admirals5WBoxScore
5 - 2018-10-0635Heat1Admirals2WBoxScore
7 - 2018-10-0847Admirals1Icehogs3LBoxScore
9 - 2018-10-1064Admirals0Griffins2LBoxScore
11 - 2018-10-1277Griffins2Admirals3WXXBoxScore
12 - 2018-10-1382Admirals0Wolves3LBoxScore
15 - 2018-10-16107Wolves0Admirals4WBoxScore
17 - 2018-10-18121Admirals0Wolves4LBoxScore
19 - 2018-10-20133Admirals1Condors2LBoxScore
20 - 2018-10-21148Comets4Admirals1LBoxScore
23 - 2018-10-24166Admirals3Crunch4LBoxScore
25 - 2018-10-26179Heat2Admirals1LBoxScore
27 - 2018-10-28194Admirals2IceCaps0WBoxScore
29 - 2018-10-30205Wild1Admirals2WBoxScore
31 - 2018-11-01217Admirals3Wolves5LBoxScore
33 - 2018-11-03235Americans1Admirals2WBoxScore
36 - 2018-11-06259Wolf Pack2Admirals1LBoxScore
38 - 2018-11-08272Admirals3Phantoms2WBoxScore
41 - 2018-11-11291Admirals1Crunch3LBoxScore
43 - 2018-11-13303Wolves2Admirals1LXXBoxScore
46 - 2018-11-16325IceCaps3Admirals0LBoxScore
48 - 2018-11-18345Condors0Admirals3WBoxScore
50 - 2018-11-20359Admirals2IceCaps1WBoxScore
52 - 2018-11-22372Admirals4Wolves3WBoxScore
54 - 2018-11-24385Wolves3Admirals0LBoxScore
56 - 2018-11-26399Admirals1Heat2LXXBoxScore
58 - 2018-11-28414Americans3Admirals1LBoxScore
60 - 2018-11-30430Admirals0Americans1LBoxScore
62 - 2018-12-02441Admirals2Griffins3LBoxScore
63 - 2018-12-03455Marlies0Admirals3WBoxScore
65 - 2018-12-05469Admirals0Bears2LBoxScore
68 - 2018-12-08485Wild1Admirals2WBoxScore
72 - 2018-12-12512Falcons2Admirals1LBoxScore
74 - 2018-12-14528Admirals0Rampage2LBoxScore
76 - 2018-12-16539Moose5Admirals2LBoxScore
78 - 2018-12-18558Admirals3Wolves2WBoxScore
80 - 2018-12-20570Admirals1Condors0WBoxScore
82 - 2018-12-22580Heat5Admirals1LBoxScore
86 - 2018-12-26604Barracuda4Admirals2LBoxScore
88 - 2018-12-28624Admirals2Pirates5LBoxScore
89 - 2018-12-29634Devils3Admirals2LBoxScore
93 - 2019-01-02656Admirals2Bruins1WBoxScore
94 - 2019-01-03667Moose3Admirals4WXXBoxScore
96 - 2019-01-05686Admirals1Reign3LBoxScore
98 - 2019-01-07697Checkers5Admirals3LBoxScore
100 - 2019-01-09717Comets1Admirals0LBoxScore
103 - 2019-01-12736Admirals1Wild3LBoxScore
105 - 2019-01-14749Admirals1Rampage4LBoxScore
106 - 2019-01-15759Stars3Admirals1LBoxScore
109 - 2019-01-18780Griffins2Admirals3WXXBoxScore
110 - 2019-01-19790Admirals1Pirates2LBoxScore
112 - 2019-01-21809Griffins1Admirals2WBoxScore
115 - 2019-01-24825Admirals1Falcons3LBoxScore
117 - 2019-01-26835Admirals2Comets3LXXBoxScore
119 - 2019-01-28852Admirals4Wolves2WBoxScore
120 - 2019-01-29859Rampage3Admirals2LXXBoxScore
123 - 2019-02-01880Stars3Admirals1LBoxScore
124 - 2019-02-02893Admirals2Senators1WXXBoxScore
126 - 2019-02-04906Admirals2Marlies1WBoxScore
127 - 2019-02-05919Monsters2Admirals1LBoxScore
129 - 2019-02-07938Admirals0Sound Tigers3LBoxScore
132 - 2019-02-10950Checkers2Admirals0LBoxScore
134 - 2019-02-12965Admirals1Stars3LBoxScore
137 - 2019-02-15978Icehogs3Admirals2LXXBoxScore
139 - 2019-02-17996Admirals2Stars3LXXBoxScore
141 - 2019-02-191006Admirals1Icehogs2LXXBoxScore
142 - 2019-02-201018Sound Tigers3Admirals2LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231035Admirals1Icehogs3LBoxScore
147 - 2019-02-251048Icehogs1Admirals2WBoxScore
149 - 2019-02-271066Admirals3Penguins2WBoxScore
151 - 2019-03-011073Admirals1Checkers2LBoxScore
152 - 2019-03-021085Marlies3Admirals1LBoxScore
157 - 2019-03-071110Admirals4Gulls1WBoxScore
158 - 2019-03-081117Pirates2Admirals1LBoxScore
161 - 2019-03-111141Rampage5Admirals3LBoxScore
167 - 2019-03-171170Wolves-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,603,676$ 2,012,500$ 2,007,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,820,988$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 5 16,642$ 83,210$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201875214300047126178-52371021000336787-20381122000145991-32571262173433544393910121941338042043167144290316273033110.23%3815585.56%21054191655.01%1124205254.78%584102656.92%181412451813544927468
Total Regular Season75214300047126178-52371021000336787-20381122000145991-32571262173433544393910121941338042043167144290316273033110.23%3815585.56%21054191655.01%1124205254.78%584102656.92%181412451813544927468