Admirals

GP: 5 | W: 1 | L: 3 | OTL: 1 | P: 3
GF: 2 | GA: 6 | PP%: 0.00% | PK%: 95.65%
GM : Pat Blais | Morale : 50 | Team Overall : 59
Next Games vs Icehogs
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tommy WingelsXX97.008956827873619160676062776370736850660
2Daniel WinnikXXX99.006152896977669458486658802580836650650
3Lauri KorpikoskiXX96.006542958175628758256362762575776850650
4Ben StreetX99.007467906867818567806862665947476750640
5Chris MuellerX100.007975876575737663796260665744446550610
6Jordan SzwarzX99.007143946872598060627055672548486450610
7Miikka SalomakiXX97.008545837770565562366056722558596350610
8Peter CehlarikX100.007775816775666762505862655945456450600
9Wade MeganX100.007571846871808659745856635344446350600
10Max GortzX100.007874876674748054505647644544445850580
11Felix GirardX100.006866726766808851644354585144445750560
12Tommy CrossX100.007477687177818853254943614144445650610
13Anthony BitettoX99.007865767078625456254648642556575750600
14Cameron GaunceX100.007377656777748051254641613945455450590
15Griffin ReinhartX100.008281856481687446253740643847485350590
16Clayton StonerX100.009046476868323050254845753744445350560
17Jonathan Diaby (R)X100.007682626082545646254542614044445150550
Scratches
1Brett Pollock (R)XX100.007773876873666957505158645544446150580
2Tyler Moy (R)XX100.007971966271667150634747634544445650550
3Justin Kirkland (R)XX100.007568906468697550634747614544445550550
4Joel HanleyX100.007267825567748052254840613846465450570
TEAM AVERAGE99.33766581687367755547545266425051605060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Marek Mazanec99.00556480795356505852523046465550560
2Jeff Zatkoff100.00485164704653505454533044445150520
Scratches
TEAM AVERAGE99.5052587275505550565353304545535054
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dean Evason44465958574852CAN501800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Lauri KorpikoskiAdmirals (NAS)LW/RW312330001460016.67%06722.34000070000111050.00%200000.9001000010
2Tommy WingelsAdmirals (NAS)LW/RW312332013840025.00%16521.77000070000100057.69%2600000.9201000100
3Wade MeganAdmirals (NAS)C52132205780025.00%05310.7800001000070064.52%3100001.1100000100
4Clayton StonerAdmirals (NAS)D5022-340920000.00%17715.520000700006000.00%000000.5200000000
5Anthony BitettoAdmirals (NAS)D50110001122000.00%311322.79000115000018000.00%000000.1800000000
6Ben StreetAdmirals (NAS)C5101-2404580012.50%010020.160002150000120055.84%7700000.2000000001
7Cameron GaunceAdmirals (NAS)D5011160622000.00%311022.14000214000017000.00%000000.1800000000
8Peter CehlarikAdmirals (NAS)LW5101-3404960016.67%08316.7400000000070044.44%900000.2400000000
9Max GortzAdmirals (NAS)RW5011-260250000.00%07515.1600001000000020.00%500000.2600000000
10Tommy CrossAdmirals (NAS)D41011401220050.00%49323.47000013000014000.00%000000.2100000000
11Boyd GordonPredatorsC2000-100011000.00%094.8200000000000072.73%1100000.0000000000
12Chris MuellerAdmirals (NAS)C5000-40031211000.00%18617.22000112000000067.21%6100000.0000000000
13Chris StewartPredatorsLW/RW2000-220042000.00%03618.2500015000170058.33%1200000.0000000000
14Daniel WinnikAdmirals (NAS)C/LW/RW3000100083000.00%15418.2700009000060051.72%5800000.0001000000
15Felix GirardAdmirals (NAS)C5000000300000.00%0265.3600005000060071.43%700000.0000000000
16Griffin ReinhartAdmirals (NAS)D5000460511000.00%310521.07000015000017000.00%000000.0000000000
17Joel WardPredatorsRW2000-200047000.00%03919.95000050002100050.00%200000.0000000000
18Jonathan DiabyAdmirals (NAS)D5000-500501000.00%28617.3000003000012000.00%000000.0000000000
19Jordan SzwarzAdmirals (NAS)RW5000020113000.00%18917.8600001500005000.00%200000.0000000000
20Miikka SalomakiAdmirals (NAS)LW/RW50000801288000.00%28617.2500021500002000.00%500000.0000000000
21Brett PollockAdmirals (NAS)LW/RW1000-100102000.00%077.500000000000000.00%000000.0000000000
Team Total or Average8571017-10500859577009.09%22147117.31000917300031751057.14%30800000.2303000211
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marek MazanecAdmirals (NAS)41210.9041.71245017730100.500240100
2Jeff ZatkoffAdmirals (NAS)10100.8123.0559003160000.000014000
Team Total or Average51310.8881.973040110890100.500254100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Anthony BitettoAdmirals (NAS)D281990-07-14No210 Lbs6 ft1NoNoNo1UFAPro & Farm650,000$Link
Ben StreetAdmirals (NAS)C311987-02-12No199 Lbs5 ft11NoNoNo1UFAPro & Farm650,000$Link
Brett PollockAdmirals (NAS)LW/RW221996-03-17Yes195 Lbs6 ft3NoNoNo3ELCPro & Farm850,000$850,000$850,000$Link
Cameron GaunceAdmirals (NAS)D281990-03-19No210 Lbs6 ft1NoNoNo1UFAPro & Farm575,000$Link
Chris MuellerAdmirals (NAS)C321986-03-06No209 Lbs5 ft11NoNoNo1UFAPro & Farm650,000$Link
Clayton StonerAdmirals (NAS)D331985-02-19No216 Lbs6 ft4NoNoNo1UFAPro & Farm650,000$Link
Daniel WinnikAdmirals (NAS)C/LW/RW331985-03-06No206 Lbs6 ft2NoNoNo1UFAPro & Farm2,150,000$Link
Felix GirardAdmirals (NAS)C241994-05-09No197 Lbs5 ft10NoNoNo3ELCPro & Farm850,000$850,000$850,000$Link
Griffin ReinhartAdmirals (NAS)D241994-01-24No212 Lbs6 ft4NoNoNo3ELCPro & Farm850,000$850,000$850,000$Link
Jeff ZatkoffAdmirals (NAS)LW311987-06-09No179 Lbs6 ft2NoNoNo1UFAPro & Farm650,000$Link
Joel HanleyAdmirals (NAS)D271991-06-08No193 Lbs6 ft0NoNoNo1RFAPro & Farm550,000$Link
Jonathan DiabyAdmirals (NAS)D231994-11-16Yes218 Lbs6 ft5NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Jordan SzwarzAdmirals (NAS)RW271991-05-14No200 Lbs5 ft11NoNoNo1RFAPro & Farm850,000$Link
Justin KirklandAdmirals (NAS)C/LW221996-08-01Yes183 Lbs6 ft1NoNoNo2ELCPro & Farm750,000$750,000$Link
Lauri KorpikoskiAdmirals (NAS)LW/RW321986-07-28No205 Lbs6 ft1NoNoNo2UFAPro & Farm1,800,000$1,800,000$Link
Marek MazanecAdmirals (NAS)LW/RW271991-07-17No187 Lbs6 ft4NoNoNo2RFAPro & Farm550,000$550,000$Link
Max GortzAdmirals (NAS)RW251993-01-28No196 Lbs6 ft3NoNoNo1ELCPro & Farm500,000$Link
Miikka SalomakiAdmirals (NAS)LW/RW251993-03-08No203 Lbs5 ft11NoNoNo3ELCPro & Farm850,000$850,000$850,000$Link
Peter CehlarikAdmirals (NAS)LW231995-05-12No202 Lbs6 ft2NoNoNo2ELCPro & Farm700,000$700,000$Link
Tommy CrossAdmirals (NAS)D291989-09-11No205 Lbs6 ft3NoNoNo1UFAPro & Farm550,000$Link
Tommy WingelsAdmirals (NAS)LW/RW301988-04-11No200 Lbs6 ft0NoNoNo1UFAPro & Farm650,000$Link
Tyler MoyAdmirals (NAS)C/RW231995-07-18Yes201 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Wade MeganAdmirals (NAS)C281990-07-21No192 Lbs6 ft1NoNoNo1UFAPro & Farm850,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2327.26201 Lbs6 ft11.70794,565$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tommy WingelsDaniel WinnikLauri Korpikoski40122
2Miikka SalomakiBen StreetJordan Szwarz30122
3Peter CehlarikChris MuellerMax Gortz20122
4Tommy WingelsWade MeganLauri Korpikoski10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tommy CrossAnthony Bitetto40122
2Cameron GaunceGriffin Reinhart30122
3Clayton StonerJonathan Diaby20122
4Tommy CrossAnthony Bitetto10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tommy WingelsDaniel WinnikLauri Korpikoski60122
2Miikka SalomakiBen StreetJordan Szwarz40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tommy CrossAnthony Bitetto60122
2Cameron GaunceGriffin Reinhart40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Tommy WingelsLauri Korpikoski60122
2Daniel WinnikBen Street40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Tommy CrossAnthony Bitetto60122
2Cameron GaunceGriffin Reinhart40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tommy Wingels60122Tommy CrossAnthony Bitetto60122
2Lauri Korpikoski40122Cameron GaunceGriffin Reinhart40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Tommy WingelsLauri Korpikoski60122
2Daniel WinnikBen Street40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Tommy CrossAnthony Bitetto60122
2Cameron GaunceGriffin Reinhart40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tommy WingelsDaniel WinnikLauri KorpikoskiTommy CrossAnthony Bitetto
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tommy WingelsDaniel WinnikLauri KorpikoskiTommy CrossAnthony Bitetto
Extra Forwards
Normal PowerPlayPenalty Kill
Felix Girard, Chris Mueller, Wade MeganFelix Girard, Chris MuellerWade Megan
Extra Defensemen
Normal PowerPlayPenalty Kill
Clayton Stoner, Jonathan Diaby, Cameron GaunceClayton StonerJonathan Diaby, Cameron Gaunce
Penalty Shots
Tommy Wingels, Lauri Korpikoski, Daniel Winnik, Ben Street, Jordan Szwarz
Goalie
#1 : Marek Mazanec, #2 : Jeff Zatkoff


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Griffins11000000312000000000001100000031221.00034700223012163227571410500.00%20100.00%06111851.69%7312757.48%426366.67%12284118386331
2Icehogs2020000036-31010000013-21010000023-100.00034700223036163227527132239900.00%110100.00%06111851.69%7312757.48%426366.67%12284118386331
3Rampage1000000101-1000000000001000000101-110.500000002230316322753541417100.00%60100.00%06111851.69%7312757.48%426366.67%12284118386331
Since Last GM Reset51300001711-42020000026-43110000155030.30071017002230771632275892250851900.00%23195.65%06111851.69%7312757.48%426366.67%12284118386331
Total51300001711-42020000026-43110000155030.30071017002230771632275892250851900.00%23195.65%06111851.69%7312757.48%426366.67%12284118386331
Vs Conference51300001711-42020000026-43110000155030.30071017002230771632275892250851900.00%23195.65%06111851.69%7312757.48%426366.67%12284118386331
Vs Division1130000113-21020000013-20110000100031.5001230022302616322752041019400.00%4175.00%06111851.69%7312757.48%426366.67%12284118386331
8Wolves1010000013-21010000013-20000000000000.0001230022302616322752041019400.00%4175.00%06111851.69%7312757.48%426366.67%12284118386331

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
53SOL171017778922508500
All Games
GPWLOTWOTL SOWSOLGFGA
5130001711
Home Games
GPWLOTWOTL SOWSOLGFGA
202000026
Visitor Games
GPWLOTWOTL SOWSOLGFGA
311000155
Last 10 Games
WLOTWOTL SOWSOL
130001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1900.00%23195.65%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
16322752230
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
6111851.69%7312757.48%426366.67%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12284118386331


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-176Admirals2Icehogs3LBoxScore
2 - 2018-09-1824Icehogs3Admirals1LBoxScore
3 - 2018-09-1930Admirals3Griffins1WBoxScore
4 - 2018-09-2054Wolves3Admirals1LBoxScore
6 - 2018-09-2268Admirals0Rampage1LXXBoxScore
8 - 2018-09-2488Wolves-Admirals-
9 - 2018-09-25103Griffins-Admirals-
11 - 2018-09-27124Admirals-Wolves-
12 - 2018-09-28130Admirals-Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
13 - 2018-09-29144Rampage-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
3 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,827,500$ 1,822,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 8 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT