Checkers

GP: 74 | W: 38 | L: 28 | OTL: 8 | P: 84
GF: 181 | GA: 174 | PP%: 16.17% | PK%: 85.91%
GM : Adam Buckingham | Morale : 50 | Team Overall : 58
Next Games #1158 vs Condors
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Timo MeierXX100.007854827876699170496577612557577350660
2Brandon TanevXX100.009646907467638561336364842557577150650
3Warren Foegele (R)X100.007572826772798461505365646244446650610
4Phillip Di GiuseppeX100.008357897973576959256359587559596450610
5Patrick BrownXX100.007677747277818854685548634646465950590
6Dryden HuntX100.008545936771578358335955602545456250580
7Sergey TolchinskyXX100.006658846358666861506256595344446150570
8Clark Bishop (R)X100.007570866170667054685647624544445750560
9Noah HanifinX100.007554918876779774256354587564646650680
10Robbie RussoX100.007170747470839153254645604345455650610
11Tucker Poolman (R)X100.007144997581605561254448632547475850600
12Trevor CarrickX100.007470836670758056255246624444445850600
13Keegan LoweX100.007873906573717749254240623844445450580
14Calle Rosen (R)X100.007366896566667051254641603944445450570
15Dennis RobertsonX100.007578686278667146253839603744445150560
16Tyler GanlyX100.008176926576505147254039633744445250560
17Josh Wesley (R)X100.007977836577515443253239613744445050540
Scratches
1Carter SandlakX100.00787576645751605265514760504444150530
2Erik Karlsson94X100.007364956764606448604744604244445450530
TEAM AVERAGE100.00776585697166745638515062434848565059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Alex Nedeljkovic100.00576784685361576359593044445950580
2Daniel Altshuller100.00555366815756515955543044445550560
Scratches
1Mason McDonald (R)100.00454759834344505246473044444750500
TEAM AVERAGE100.0052567077515453585353304444545055
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeff Daniels52537152797664CAN501800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Noah HanifinCheckers (CAR)D7493948474010812114422326.25%83160021.63712191232520110250200.00%000100.6048000645
2Trevor CarrickCheckers (CAR)D74103545-2111151787412220458.20%77141419.12816241012740000240310.00%000000.6400201985
3Robbie RussoCheckers (CAR)D7410243449351677612924357.75%69160621.7181018982530001259300.00%000000.4200100555
4Sergey TolchinskyCheckers (CAR)LW/RW74171734-2460102119146245311.64%11101013.66101727000041153.97%6300000.6701000653
5Warren FoegeleCheckers (CAR)LW741711282540111113145294711.72%679810.79000000000373048.00%5000000.7039000348
6Calle RosenCheckers (CAR)D7421820-146094683012126.67%4884011.3600035000019010.00%000000.4800000225
7Tucker PoolmanCheckers (CAR)D293710-4120223355005.45%2153118.322574884000099100.00%000000.3800000110
8Tyler GanlyCheckers (CAR)D57279-23955724144014.29%223826.710110100000000.00%000000.4700001201
9Dryden HuntCheckers (CAR)LW742353602727193710.53%01852.5000000000000040.00%1500000.5400000011
10Clark BishopCheckers (CAR)C26415-32154753380010.53%334613.3300059000000051.86%37600000.2911010021
11Keegan LoweCheckers (CAR)D23224-6260442090022.22%1329212.7200000101134000.00%000000.2700000110
12Josh WesleyCheckers (CAR)D7412322010264316.67%4630.86123421000010100.00%000000.9400000000
13Dennis RobertsonCheckers (CAR)D9000-4401121000.00%1667.330000000000000.00%000000.0000000000
Team Total or Average73679166245-9534309787328581422349.21%358913912.42274673389930112295614351.39%50400100.54819312353334
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Alex NedeljkovicCheckers (CAR)59292080.9022.3734732513713920210.636335874665
2Kasimir KaskisuoHurricanes169700.9261.6996022273640000.90911160321
Team Total or Average75382780.9072.2244344716417560210.705447474986


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex NedeljkovicCheckers (CAR)G231996-01-07No198 Lbs6 ft0NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Brandon TanevCheckers (CAR)LW/RW271991-12-31No180 Lbs6 ft0NoNoNo1RFAPro & Farm950,000$0$0$NoLink
Calle RosenCheckers (CAR)D251994-02-02Yes176 Lbs6 ft0NoNoNo3ELCPro & Farm975,000$0$0$NoLink
Carter SandlakCheckers (CAR)LW251993-05-18No200 Lbs6 ft2NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Clark BishopCheckers (CAR)C221996-03-28Yes194 Lbs6 ft0NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Daniel AltshullerCheckers (CAR)G241994-07-24No205 Lbs6 ft3NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Dennis RobertsonCheckers (CAR)D271991-05-24No215 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Dryden HuntCheckers (CAR)LW231995-11-26No197 Lbs6 ft0NoNoNo1ELCPro & Farm950,000$0$0$NoLink
Erik Karlsson94Checkers (CAR)LW241994-07-28No170 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Josh WesleyCheckers (CAR)D221996-04-09Yes205 Lbs6 ft3NoNoNo3ELCPro & Farm600,000$0$0$NoLink
Keegan LoweCheckers (CAR)D251993-03-29No195 Lbs6 ft2NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Mason McDonaldCheckers (CAR)G221996-04-23Yes200 Lbs6 ft4NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Noah HanifinCheckers (CAR)D221997-01-25No206 Lbs6 ft3NoNoNo1ELCPro & Farm950,000$0$0$NoLink
Patrick BrownCheckers (CAR)C/RW261992-05-28No210 Lbs6 ft1NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Phillip Di GiuseppeCheckers (CAR)LW251993-10-08No200 Lbs6 ft0NoNoNo2ELCPro & Farm950,000$0$0$NoLink
Robbie RussoCheckers (CAR)D261993-02-15No189 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Sergey TolchinskyCheckers (CAR)LW/RW241995-02-03No170 Lbs5 ft8NoNoNo1ELCPro & Farm608,000$0$0$NoLink
Timo MeierCheckers (CAR)LW/RW221996-10-08No210 Lbs6 ft0NoNoNo2ELCPro & Farm950,000$0$0$NoLink
Trevor CarrickCheckers (CAR)D241994-07-03No186 Lbs6 ft2NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Tucker PoolmanCheckers (CAR)D251993-06-08Yes199 Lbs6 ft2NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Tyler GanlyCheckers (CAR)D241995-03-22No204 Lbs6 ft2NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Warren FoegeleCheckers (CAR)LW221996-04-01Yes190 Lbs6 ft2NoNoNo3ELCPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2224.05195 Lbs6 ft11.95776,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Sergey Tolchinsky30122
3Warren Foegele20122
4Dryden HuntWarren Foegele10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah HanifinRobbie Russo40122
2Trevor Carrick30122
3Calle Rosen20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Sergey Tolchinsky40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah HanifinRobbie Russo60122
2Trevor Carrick40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Warren Foegele40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah HanifinRobbie Russo60122
2Trevor Carrick40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Noah HanifinRobbie Russo60122
240122Trevor Carrick40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Warren Foegele40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Noah HanifinRobbie Russo60122
2Trevor Carrick40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Noah HanifinRobbie Russo
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Noah HanifinRobbie Russo
Extra Forwards
Normal PowerPlayPenalty Kill
Dryden Hunt, , Sergey TolchinskyDryden Hunt, Sergey Tolchinsky
Extra Defensemen
Normal PowerPlayPenalty Kill
Josh Wesley, , Calle RosenJosh Wesley, Calle Rosen
Penalty Shots
, , , Warren Foegele,
Goalie
#1 : , #2 : Alex Nedeljkovic


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals33000000945110000002112200000073461.00091726018052421477603545532585014207011327.27%8275.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
2Americans32100000862220000005231010000034-140.66781422008052421482603545532586425307117317.65%14471.43%01022214947.56%995216645.94%451100844.74%184113171805508863435
3Barracuda2020000047-3000000000002020000047-300.000481200805242144860354553258411422491317.69%10190.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
4Bears11000000303110000003030000000000021.00036901805242142560354553258196821400.00%30100.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
5Bruins10000010321000000000001000001032121.000347008052421419603545532581851413100.00%70100.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
6Comets3120000057-21010000023-12110000034-120.3335813018052421456603545532585419405114214.29%17288.24%01022214947.56%995216645.94%451100844.74%184113171805508863435
7Condors4110001189-11010000013-23100001176150.62581321008052421488603545532588028408721419.05%20480.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
8Crunch2010010079-21010000045-11000010034-110.2507142100805242145560354553258691528368112.50%13192.31%11022214947.56%995216645.94%451100844.74%184113171805508863435
9Devils22000000624110000003031100000032141.00061117018052421445603545532583413225010220.00%11190.91%01022214947.56%995216645.94%451100844.74%184113171805508863435
10Falcons1010000014-31010000014-30000000000000.00012300805242142760354553258311012208112.50%6266.67%01022214947.56%995216645.94%451100844.74%184113171805508863435
11Griffins31200000811-32110000046-21010000045-120.33381422008052421467603545532581042332741119.09%16287.50%01022214947.56%995216645.94%451100844.74%184113171805508863435
12Gulls2110000046-2110000002111010000025-320.5004711008052421436603545532584712282812216.67%14471.43%01022214947.56%995216645.94%451100844.74%184113171805508863435
13Heat31100010651110000004132010001024-240.6676915008052421477603545532587815344916318.75%15193.33%01022214947.56%995216645.94%451100844.74%184113171805508863435
14IceCaps3110000111831000000145-12110000073430.5001121320080524214756035455325810525236620420.00%9188.89%01022214947.56%995216645.94%451100844.74%184113171805508863435
15Icehogs41100011990200000116602110000033050.62591625008052421478603545532587725428223313.04%20290.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
16Marlies320000101046210000106241100000042261.000101626018052421486603545532586714277315213.33%11281.82%01022214947.56%995216645.94%451100844.74%184113171805508863435
17Monsters3120000069-31010000025-32110000044020.33361218008052421454603545532581022442697228.57%18477.78%01022214947.56%995216645.94%451100844.74%184113171805508863435
18Moose1010000012-11010000012-10000000000000.000123008052421419603545532582321021300.00%5180.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
19Penguins1000010023-1000000000001000010023-110.5002460080524214136035455325819810147228.57%50100.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
20Phantoms1010000013-2000000000001010000013-200.000123108052421416603545532582613824600.00%3166.67%01022214947.56%995216645.94%451100844.74%184113171805508863435
21Pirates513000011115-4311000018802020000037-430.300112233008052421410460354553258134496213813215.38%30293.33%01022214947.56%995216645.94%451100844.74%184113171805508863435
22Rampage311000106601010000003-32100001063340.667691500805242148860354553258822326531218.33%12283.33%01022214947.56%995216645.94%451100844.74%184113171805508863435
23Reign11000000211110000002110000000000021.000246008052421425603545532581422022500.00%5180.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
24Senators21100000541211000005410000000000020.50059140080524214396035455325845101640400.00%80100.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
25Sound Tigers11000000312110000003120000000000021.0003580080524214296035455325811311239333.33%30100.00%01022214947.56%995216645.94%451100844.74%184113171805508863435
26Stars54000010181082200000095432000010954101.000183452008052421412360354553258120425210730826.67%26580.77%01022214947.56%995216645.94%451100844.74%184113171805508863435
Total74312800276181174737171300025928573714150025189890840.5681813275081780524214169660354553258178151479715683345416.17%3625185.91%21022214947.56%995216645.94%451100844.74%184113171805508863435
28Wild42200000810-2321000006421010000026-440.50081422018052421482603545532588624328712325.00%16287.50%01022214947.56%995216645.94%451100844.74%184113171805508863435
29Wolf Pack1010000034-11010000034-10000000000000.0003690080524214136035455325828101214100.00%6183.33%01022214947.56%995216645.94%451100844.74%184113171805508863435
30Wolves311000017611000000134-12110000042230.5007142101805242147660354553258752237669111.11%15193.33%01022214947.56%995216645.94%451100844.74%184113171805508863435
31Wolves3110000167-12010000135-21100000032130.5006101600805242147460354553258781937501200.00%16287.50%11022214947.56%995216645.94%451100844.74%184113171805508863435
_Since Last GM Reset74312800276181174737171300025928573714150025189890840.5681813275081780524214169660354553258178151479715683345416.17%3625185.91%21022214947.56%995216645.94%451100844.74%184113171805508863435
_Vs Conference52231700066130117132511700025635852712100004167598640.6151302313610580524214123360354553258125436753411242364016.95%2453486.12%11022214947.56%995216645.94%451100844.74%184113171805508863435

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7484L318132750816961781514797156817
All Games
GPWLOTWOTL SOWSOLGFGA
7431280276181174
Home Games
GPWLOTWOTL SOWSOLGFGA
37171300259285
Visitor Games
GPWLOTWOTL SOWSOLGFGA
37141502518989
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3345416.17%3625185.91%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
6035455325880524214
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1022214947.56%995216645.94%451100844.74%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
184113171805508863435


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0314Pirates1Checkers4WBoxScore
5 - 2018-10-0633Wild0Checkers1WBoxScore
7 - 2018-10-0853Checkers1IceCaps2LBoxScore
10 - 2018-10-1168Pirates4Checkers2LBoxScore
12 - 2018-10-1385Checkers2Stars1WXXBoxScore
14 - 2018-10-1597Checkers1Icehogs2LBoxScore
15 - 2018-10-16102Checkers3Condors2WXXBoxScore
17 - 2018-10-18119Senators3Checkers0LBoxScore
19 - 2018-10-20139Americans1Checkers2WBoxScore
22 - 2018-10-23159Marlies0Checkers3WBoxScore
23 - 2018-10-24168Checkers2Condors1WBoxScore
26 - 2018-10-27185Checkers2Heat1WXXBoxScore
27 - 2018-10-28195Checkers2Pirates3LBoxScore
29 - 2018-10-30209Wolves1Checkers0LBoxScore
32 - 2018-11-02223Checkers2Monsters1WBoxScore
33 - 2018-11-03238Checkers1Pirates4LBoxScore
34 - 2018-11-04246Marlies2Checkers3WXXBoxScore
37 - 2018-11-07269Wolves4Checkers3LXXBoxScore
40 - 2018-11-10289Checkers3Devils2WBoxScore
42 - 2018-11-12301Moose2Checkers1LBoxScore
44 - 2018-11-14315Checkers2Monsters3LBoxScore
46 - 2018-11-16329Checkers3Stars2WBoxScore
47 - 2018-11-17339Pirates3Checkers2LXXBoxScore
50 - 2018-11-20357Checkers2Penguins3LXBoxScore
51 - 2018-11-21368Wild1Checkers3WBoxScore
54 - 2018-11-24389Sound Tigers1Checkers3WBoxScore
56 - 2018-11-26404Checkers3Bruins2WXXBoxScore
58 - 2018-11-28418Rampage3Checkers0LBoxScore
61 - 2018-12-01434Checkers3Wolves2WBoxScore
63 - 2018-12-03448Checkers2Gulls5LBoxScore
65 - 2018-12-05462Crunch5Checkers4LBoxScore
68 - 2018-12-08486Senators1Checkers5WBoxScore
70 - 2018-12-10499Checkers3Rampage2WXXBoxScore
72 - 2018-12-12514Wild3Checkers2LBoxScore
75 - 2018-12-15538Comets3Checkers2LBoxScore
78 - 2018-12-18559Checkers2Icehogs1WBoxScore
80 - 2018-12-20568Checkers3Crunch4LXBoxScore
81 - 2018-12-21579Gulls1Checkers2WBoxScore
84 - 2018-12-24597Checkers4Marlies2WBoxScore
86 - 2018-12-26610Heat1Checkers4WBoxScore
88 - 2018-12-28625Checkers4Stars2WBoxScore
90 - 2018-12-30637Icehogs1Checkers2WXXBoxScore
92 - 2019-01-01650Checkers1Comets4LBoxScore
94 - 2019-01-03665Checkers0Heat3LBoxScore
95 - 2019-01-04677Wolves4Checkers3LXXBoxScore
98 - 2019-01-07697Checkers5Admirals3WBoxScore
99 - 2019-01-08707Falcons4Checkers1LBoxScore
102 - 2019-01-11730Condors3Checkers1LBoxScore
103 - 2019-01-12740Checkers1Phantoms3LBoxScore
106 - 2019-01-15760Icehogs5Checkers4LXXBoxScore
108 - 2019-01-17777Checkers2Condors3LXXBoxScore
110 - 2019-01-19787Checkers1Wolves2LBoxScore
111 - 2019-01-20799Stars3Checkers6WBoxScore
114 - 2019-01-23819Checkers3Wolves0WBoxScore
116 - 2019-01-25831Devils0Checkers3WBoxScore
118 - 2019-01-27845Checkers4Griffins5LBoxScore
120 - 2019-01-29860Stars2Checkers3WBoxScore
122 - 2019-01-31875Checkers3Americans4LBoxScore
124 - 2019-02-02890Bears0Checkers3WBoxScore
127 - 2019-02-05918IceCaps5Checkers4LXXBoxScore
128 - 2019-02-06924Checkers6IceCaps1WBoxScore
131 - 2019-02-09948Monsters5Checkers2LBoxScore
132 - 2019-02-10950Checkers2Admirals0WBoxScore
137 - 2019-02-15979Checkers0Barracuda2LBoxScore
138 - 2019-02-16986Americans1Checkers3WBoxScore
141 - 2019-02-191011Griffins1Checkers3WBoxScore
143 - 2019-02-211021Checkers4Barracuda5LBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
146 - 2019-02-241042Reign1Checkers2WBoxScore
147 - 2019-02-251053Checkers2Comets0WBoxScore
151 - 2019-03-011073Admirals1Checkers2WBoxScore
152 - 2019-03-021086Checkers3Rampage1WBoxScore
155 - 2019-03-051104Griffins5Checkers1LBoxScore
159 - 2019-03-091125Wolf Pack4Checkers3LBoxScore
160 - 2019-03-101136Checkers2Wild6LBoxScore
165 - 2019-03-151158Condors-Checkers-
167 - 2019-03-171177Checkers-Wild-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,455,846$ 1,708,300$ 1,623,300$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,672,667$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 5 14,842$ 74,210$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201874312800276181174737171300025928573714150025189890841813275081780524214169660354553258178151479715683345416.17%3625185.91%21022214947.56%995216645.94%451100844.74%184113171805508863435
Total Regular Season74312800276181174737171300025928573714150025189890841813275081780524214169660354553258178151479715683345416.17%3625185.91%21022214947.56%995216645.94%451100844.74%184113171805508863435