Barracuda

GP: 20 | W: 12 | L: 6 | OTL: 2 | P: 26
GF: 18 | GA: 18 | PP%: 15.31% | PK%: 87.50%
GM : Mat Peltier | Morale : 50 | Team Overall : 58
Next Games vs Bruins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Reid BoucherXX100.006942998368617270346068687559596950640
2Scott LaughtonX100.008157847567598762826162732562636750640
3Carter RowneyX100.008245967375546659825757882553536650630
4Teemu PulkkinenXX100.007166826966798366506364666155556750630
5Curtis ValkX100.006358766258838866806663596044446550610
6Anton SlepyshevXX100.007744947572626861296162602556566550600
7Christian ThomasX100.007062906762717363505765626245456550600
8Frederick GaudreauX100.006341967465548956756255682546466350600
9Daniel O'ReganX100.005940967262566158666555632546466150580
10Andrew MangiapaneX100.007342937863545757255055562544445950550
11Alex Schoenborn (R)X100.007472786272626648504545604344445350530
12Andrej SustrX100.005942877786617962255048722566696050650
13Matt TennysonX100.007344847076757673254047692558585950640
14Eric GelinasX100.008081776881707456254053705062626050630
15Dominik Masin (R)X100.007070697170788550254046594444445550590
16Gus YoungX100.007072646472606446254640583844445050550
17Nelson Nogier (R)X100.007672866572495145253539603744445050540
Scratches
1John McCarronXX100.00708064625947555264484757504444150510
2Connor CrispX100.00568356625950605265484750504444150500
3Dylan Sadowy (R)X100.007268806668474944503844584244445050500
TEAM AVERAGE100.00705983706962705748525364415050545059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Scott Darling100.00576766955756545558574358595850600
2Jeff Glass100.00586259826650505863586545455850580
Scratches
1Andrew Hammond100.00525063795453505652523050515350550
TEAM AVERAGE100.0056606385595351565856465152565058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Kevin Dean66726848484758USA454600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Teemu PulkkinenBarracuda (SJS)LW/RW20771441203627410017.07%431715.883361165000001127.27%2200000.8801000025
2Reid BoucherBarracuda (SJS)LW/RW206612-380385283007.23%338619.351561881000052033.33%3300000.6202000322
3Eric GelinasBarracuda (SJS)D20471113154616340011.76%2442821.404262570000053000.00%000000.5100010220
4Matt TennysonBarracuda (SJS)D203811-6804424300010.00%2345722.882352375000062100.00%000000.4800000311
5Christian ThomasBarracuda (SJS)RW20551041403726440011.36%431715.882241365000002043.75%1600000.6312000120
6Andrej SustrBarracuda (SJS)D20088-8100102020000.00%2244422.210441571000059000.00%000000.3600000000
7Carter RowneyBarracuda (SJS)C332520061070042.86%04414.9211217000000060.78%5100002.2300000111
8Dominik MasinBarracuda (SJS)D20055-117532816000.00%1744122.090331272000059000.00%000000.2300001002
9Anton SlepyshevBarracuda (SJS)LW/RW20134-4200192524004.17%021510.7600000000001025.00%1200000.3700000000
10Curtis ValkBarracuda (SJS)C20224-480202621009.52%120710.4000000000000059.47%19000000.3811000010
11Nelson NogierBarracuda (SJS)D2002211203164000.00%731615.8400007000028000.00%000000.1300000001
12Gus YoungBarracuda (SJS)D201015161032650020.00%932416.21000119000018000.00%000000.0600101001
13Frederick GaudreauBarracuda (SJS)C20011-22022113000.00%41306.5100000000000055.24%10500000.1500000000
14Daniel O'ReganBarracuda (SJS)C20000-100120000.00%2251.25000012000000040.00%500000.0000000000
15Andrew MangiapaneBarracuda (SJS)LW20000-240181417000.00%01306.5100000000000012.50%800000.0000000000
Team Total or Average283325688-1416220372283359008.91%120418714.8013233611954800002897152.49%44200000.4226112101113
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Scott DarlingBarracuda (SJS)2012620.9041.85116606363740001.0008200430
2Jeff GlassBarracuda (SJS)20000.9262.4549002270000.0000020000
Team Total or Average2212620.9051.88121606384010001.00082020430


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alex SchoenbornBarracuda (SJS)RW221995-12-11Yes196 Lbs6 ft1NoNoNo2ELCPro & Farm750,000$750,000$Link
Andrej SustrBarracuda (SJS)D271990-11-28No220 Lbs6 ft7NoNoNo3RFAPro & Farm2,750,000$2,750,000$2,750,000$Link
Andrew HammondBarracuda (SJS)D301988-10-02No215 Lbs6 ft2NoNoNo1UFAPro & Farm1,350,000$Link
Andrew MangiapaneBarracuda (SJS)LW221996-04-03No184 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$500,000$Link
Anton SlepyshevBarracuda (SJS)LW/RW241994-05-12No218 Lbs6 ft2NoNoNo1ELCPro & Farm700,000$Link
Carter RowneyBarracuda (SJS)C291989-05-10No200 Lbs6 ft2NoNoNo3UFAPro & Farm1,111,111$1,111,111$1,111,111$Link
Christian ThomasBarracuda (SJS)RW261992-05-26No175 Lbs5 ft9NoNoNo1ELCPro & Farm525,000$Link
Connor CrispBarracuda (SJS)LW241994-04-08No226 Lbs6 ft3NoNoNo2ELCPro & Farm525,000$525,000$Link
Curtis ValkBarracuda (SJS)C251993-02-07No160 Lbs5 ft9NoNoNo1ELCPro & Farm600,000$Link
Daniel O'ReganBarracuda (SJS)C241994-01-30No180 Lbs5 ft9NoNoNo2ELCPro & Farm500,000$500,000$Link
Dominik MasinBarracuda (SJS)D221996-01-31Yes198 Lbs6 ft2NoNoNo2ELCPro & Farm850,000$850,000$Link
Dylan SadowyBarracuda (SJS)LW221996-04-01Yes180 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$700,000$Link
Eric GelinasBarracuda (SJS)D271991-05-08No215 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$Link
Frederick GaudreauBarracuda (SJS)C251993-05-01No179 Lbs6 ft0NoNoNo1ELCPro & Farm1,000,000$Link
Gus YoungBarracuda (SJS)D271991-07-10No190 Lbs6 ft2NoNoNo1RFAPro & Farm600,000$Link
Jeff GlassBarracuda (SJS)LW321985-11-18No206 Lbs6 ft3NoNoNo3UFAPro & Farm525,000$525,000$525,000$Link
John McCarronBarracuda (SJS)C/RW261992-04-16No218 Lbs6 ft3NoNoNo1ELCPro & Farm500,000$Link
Matt TennysonBarracuda (SJS)D281990-04-22No205 Lbs6 ft2NoNoNo2UFAPro & Farm1,200,000$1,200,000$Link
Nelson NogierBarracuda (SJS)D221996-05-26Yes191 Lbs6 ft2NoNoNo2ELCPro & Farm650,000$650,000$Link
Reid BoucherBarracuda (SJS)LW/RW251993-09-07No195 Lbs5 ft10NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Scott DarlingBarracuda (SJS)C/LW291988-12-21No232 Lbs6 ft6NoNoNo2UFAPro & Farm950,000$950,000$Link
Scott LaughtonBarracuda (SJS)C241994-05-29No190 Lbs6 ft1NoNoNo2ELCPro & Farm1,900,000$1,900,000$Link
Teemu PulkkinenBarracuda (SJS)LW/RW261992-01-01No185 Lbs5 ft10NoNoNo1ELCPro & Farm1,300,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2325.57198 Lbs6 ft11.78905,918$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Reid Boucher40122
2Teemu PulkkinenChristian Thomas30122
3Anton SlepyshevCurtis Valk20122
4Andrew MangiapaneFrederick Gaudreau10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson40122
2Eric GelinasDominik Masin30122
3Gus YoungNelson Nogier20122
4Andrej SustrMatt Tennyson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Reid Boucher60122
2Teemu PulkkinenChristian Thomas40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson60122
2Eric GelinasDominik Masin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Reid Boucher40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson60122
2Eric GelinasDominik Masin40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Andrej SustrMatt Tennyson60122
240122Eric GelinasDominik Masin40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Reid Boucher40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson60122
2Eric GelinasDominik Masin40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Reid BoucherAndrej SustrMatt Tennyson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Reid BoucherAndrej SustrMatt Tennyson
Extra Forwards
Normal PowerPlayPenalty Kill
Daniel O'Regan, Curtis Valk, Anton SlepyshevDaniel O'Regan, Curtis ValkAnton Slepyshev
Extra Defensemen
Normal PowerPlayPenalty Kill
Gus Young, Nelson Nogier, Eric GelinasGus YoungNelson Nogier, Eric Gelinas
Penalty Shots
, , Reid Boucher, , Teemu Pulkkinen
Goalie
#1 : Scott Darling, #2 : Jeff Glass


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans1010000035-2000000000001010000035-200.0003690014149420129121163152456226233.33%3166.67%025954847.26%25850051.60%12926049.62%521375457135238123
2Bears11000000101110000001010000000000021.00012301141494151291211631573815800.00%40100.00%025954847.26%25850051.60%12926049.62%521375457135238123
3Bruins21100000734000000000002110000073420.500714210014149462129121163152811145512433.33%7185.71%025954847.26%25850051.60%12926049.62%521375457135238123
4Crunch1000010012-11000010012-10000000000010.50011200141494291291211631578817600.00%4175.00%025954847.26%25850051.60%12926049.62%521375457135238123
5Falcons21000010413100000101011100000031241.00043701141494431291211631535818531218.33%90100.00%025954847.26%25850051.60%12926049.62%521375457135238123
6Gulls2010100014-3000000000002010100014-320.50012301141494321291211631537171035700.00%5180.00%025954847.26%25850051.60%12926049.62%521375457135238123
7IceCaps1010000001-11010000001-10000000000000.00000000141494181291211631532101322600.00%40100.00%025954847.26%25850051.60%12926049.62%521375457135238123
8Icehogs11000000422110000004220000000000021.000461000141494231291211631530612215120.00%6183.33%025954847.26%25850051.60%12926049.62%521375457135238123
9Moose31001100871210001004401000100043150.833815230114149462129121163157627287312216.67%13192.31%025954847.26%25850051.60%12926049.62%521375457135238123
10Pirates1010000015-41010000015-40000000000000.00012300141494161291211631531620273133.33%5260.00%025954847.26%25850051.60%12926049.62%521375457135238123
11Reign22000000422000000000002200000042241.00046100114149438129121163154017163810110.00%7185.71%025954847.26%25850051.60%12926049.62%521375457135238123
12Senators21000010642210000106420000000000041.00061016011414944812912116315349193910330.00%7185.71%025954847.26%25850051.60%12926049.62%521375457135238123
Since Last GM Reset208602220413831042002201818010440200023203260.65041691100614149442012912116315401132186446981515.31%801087.50%025954847.26%25850051.60%12926049.62%521375457135238123
Total208602220413831042002201818010440200023203260.65041691100614149442012912116315401132186446981515.31%801087.50%025954847.26%25850051.60%12926049.62%521375457135238123
Vs Conference1673022203325873000220131039430200020155240.7503355880614149434312912116315284105135354781114.10%62690.32%025954847.26%25850051.60%12926049.62%521375457135238123
Vs Division851011101820-251000110812-4341010001082150.93818335101141494193129121163151564980182431023.26%30680.00%025954847.26%25850051.60%12926049.62%521375457135238123
17Wolf Pack1010000012-1000000000001010000012-100.0001230014149414129121163152051429100.00%60100.00%025954847.26%25850051.60%12926049.62%521375457135238123

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2026L2416911042040113218644606
All Games
GPWLOTWOTL SOWSOLGFGA
208622204138
Home Games
GPWLOTWOTL SOWSOLGFGA
104202201818
Visitor Games
GPWLOTWOTL SOWSOLGFGA
104420002320
Last 10 Games
WLOTWOTL SOWSOL
541000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
981515.31%801087.50%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
12912116315141494
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
25954847.26%25850051.60%12926049.62%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
521375457135238123


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0313Barracuda1Bruins2LBoxScore
4 - 2018-10-0525Moose4Barracuda3LXBoxScore
6 - 2018-10-0738Senators4Barracuda5WXXBoxScore
9 - 2018-10-1066Barracuda4Moose3WXBoxScore
10 - 2018-10-1173Barracuda3Reign2WBoxScore
13 - 2018-10-1487Falcons0Barracuda1WXXBoxScore
14 - 2018-10-15100Barracuda0Gulls4LBoxScore
16 - 2018-10-17118Moose0Barracuda1WBoxScore
17 - 2018-10-18126Barracuda1Reign0WBoxScore
20 - 2018-10-21145Crunch2Barracuda1LXBoxScore
23 - 2018-10-24164Senators0Barracuda1WBoxScore
25 - 2018-10-26181Barracuda3Falcons1WBoxScore
27 - 2018-10-28191Barracuda6Bruins1WBoxScore
28 - 2018-10-29203Barracuda3Americans5LBoxScore
30 - 2018-10-31215Bears0Barracuda1WBoxScore
33 - 2018-11-03233Barracuda1Wolf Pack2LBoxScore
34 - 2018-11-04245Icehogs2Barracuda4WBoxScore
36 - 2018-11-06263Barracuda1Gulls0WXBoxScore
39 - 2018-11-09277IceCaps1Barracuda0LBoxScore
42 - 2018-11-12300Pirates5Barracuda1LBoxScore
45 - 2018-11-15319Wolves-Barracuda-
47 - 2018-11-17335Barracuda-IceCaps-
49 - 2018-11-19351Bears-Barracuda-
51 - 2018-11-21367Barracuda-Heat-
53 - 2018-11-23381Barracuda-Wolf Pack-
55 - 2018-11-25394Wolf Pack-Barracuda-
58 - 2018-11-28413Phantoms-Barracuda-
62 - 2018-12-02442Senators-Barracuda-
64 - 2018-12-04458Barracuda-Penguins-
66 - 2018-12-06471Barracuda-Sound Tigers-
67 - 2018-12-07480Bruins-Barracuda-
70 - 2018-12-10502Gulls-Barracuda-
73 - 2018-12-13521Barracuda-Falcons-
75 - 2018-12-15535Phantoms-Barracuda-
77 - 2018-12-17549Barracuda-Moose-
79 - 2018-12-19564Stars-Barracuda-
82 - 2018-12-22582Barracuda-Devils-
84 - 2018-12-24595Crunch-Barracuda-
86 - 2018-12-26604Barracuda-Admirals-
88 - 2018-12-28627Falcons-Barracuda-
91 - 2018-12-31644Barracuda-Wild-
93 - 2019-01-02657Barracuda-Condors-
94 - 2019-01-03668Devils-Barracuda-
97 - 2019-01-06689Comets-Barracuda-
98 - 2019-01-07704Barracuda-Bears-
101 - 2019-01-10720Falcons-Barracuda-
103 - 2019-01-12737Barracuda-Crunch-
105 - 2019-01-14752Marlies-Barracuda-
107 - 2019-01-16768Barracuda-Moose-
109 - 2019-01-18781Sound Tigers-Barracuda-
111 - 2019-01-20797Barracuda-Senators-
113 - 2019-01-22813Moose-Barracuda-
116 - 2019-01-25833Barracuda-Phantoms-
117 - 2019-01-26840Barracuda-Monsters-
118 - 2019-01-27850Penguins-Barracuda-
121 - 2019-01-30866Barracuda-Wolves-
123 - 2019-02-01885Penguins-Barracuda-
125 - 2019-02-03897Barracuda-Devils-
126 - 2019-02-04904Barracuda-Monsters-
127 - 2019-02-05920Bruins-Barracuda-
131 - 2019-02-09945Devils-Barracuda-
133 - 2019-02-11957Barracuda-Phantoms-
135 - 2019-02-13970Barracuda-Bruins-
137 - 2019-02-15979Checkers-Barracuda-
139 - 2019-02-17993Barracuda-Rampage-
140 - 2019-02-181000Barracuda-Condors-
142 - 2019-02-201013Barracuda-Americans-
143 - 2019-02-211021Checkers-Barracuda-
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2019-02-251047Griffins-Barracuda-
149 - 2019-02-271064Barracuda-Reign-
151 - 2019-03-011078Reign-Barracuda-
156 - 2019-03-061107Barracuda-Sound Tigers-
157 - 2019-03-071113Monsters-Barracuda-
160 - 2019-03-101132Reign-Barracuda-
162 - 2019-03-121147Barracuda-Reign-
167 - 2019-03-171169Griffins-Barracuda-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,083,611$ 1,841,389$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
713,772$ 0$ 557,572$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 15,879$ 1,984,875$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182086022204138310420022018180104402000232032641691100614149442012912116315401132186446981515.31%801087.50%025954847.26%25850051.60%12926049.62%521375457135238123
Total Regular Season2086022204138310420022018180104402000232032641691100614149442012912116315401132186446981515.31%801087.50%025954847.26%25850051.60%12926049.62%521375457135238123