Barracuda

GP: 75 | W: 37 | L: 30 | OTL: 8 | P: 82
GF: 190 | GA: 192 | PP%: 15.20% | PK%: 85.59%
GM : Mat Peltier | Morale : 50 | Team Overall : 58
Next Games #1169 vs Griffins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Reid BoucherXX100.006942998368617270346068687559596950640
2Scott LaughtonX100.008157847567598762826162732562636750640
3Carter RowneyX100.008245967375546659825757882553536650630
4Teemu PulkkinenXX100.007166826966798366506364666155556750630
5Curtis ValkX100.006358766258838866806663596044446550610
6Anton SlepyshevXX100.007744947572626861296162602556566550600
7Christian ThomasX100.007062906762717363505765626245456550600
8Frederick GaudreauX100.006341967465548956756255682546466350600
9Daniel O'ReganX100.005940967262566158666555632546466150580
10Andrew MangiapaneX100.007342937863545757255055562544445950550
11Alex Schoenborn (R)X100.007472786272626648504545604344445350530
12Andrej SustrX100.005942877786617962255048722566696050650
13Matt TennysonX100.007344847076757673254047692558585950640
14Eric GelinasX100.008081776881707456254053705062626050630
15Dominik Masin (R)X100.007070697170788550254046594444445550590
16Gus YoungX100.007072646472606446254640583844445050550
17Nelson Nogier (R)X100.007672866572495145253539603744445050540
Scratches
1John McCarronXX100.00708064625947555264484757504444150510
2Connor CrispX100.00568356625950605265484750504444150500
3Dylan Sadowy (R)X100.007268806668474944503844584244445050500
TEAM AVERAGE100.00705983706962705748525364415050545059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Jeff Glass100.00586259826650505863586545455850580
2Andrew Hammond100.00525063795453505652523050515350550
Scratches
TEAM AVERAGE100.0055566181605250575855484848565057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Kevin Dean66726848484758USA454600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Reid BoucherBarracuda (SJS)LW/RW75422163-3500132215312429913.46%13142018.941013237627900002311233.65%10400120.8931000012712
2Teemu PulkkinenBarracuda (SJS)LW/RW75222850-2460138108177276712.43%10120016.008111952236000004139.34%6100000.8303000639
3Christian ThomasBarracuda (SJS)RW75172441-24201128117916659.50%12119916.00491346236000004152.86%7000000.6814000154
4Matt TennysonBarracuda (SJS)D7563541-167401778111122405.41%71165922.125914852770000233300.00%000000.4900000354
5Andrej SustrBarracuda (SJS)D7573239-1834049809721247.22%69163121.7531316682610000233010.00%000100.4800000121
6Eric GelinasBarracuda (SJS)D75102737-3113152026611226518.93%94159021.2081119782620000221000.00%000000.4711210632
7Curtis ValkBarracuda (SJS)C7592029-122054999721479.28%775710.1000003000002161.02%64900000.7723000133
8Anton SlepyshevBarracuda (SJS)LW/RW75141428-35006594113244912.39%177210.3000019000041034.78%4600000.7200000324
9Dominik MasinBarracuda (SJS)D5841923-554109024574107.02%52124221.4221012382030112186110.00%000000.3700002043
10Gus YoungBarracuda (SJS)D67411156961015229222618.18%38104915.67011751000031100.00%000000.2900101012
11Frederick GaudreauBarracuda (SJS)C757512-18020754931314.29%74415.8900000000000157.76%43800000.5400000240
12Andrew MangiapaneBarracuda (SJS)LW751910-312050474713202.13%34345.7900000000000023.81%2100000.4600000200
13Carter RowneyBarracuda (SJS)C332520061070042.86%04414.9211217000000060.78%5100002.2300000111
14Daniel O'ReganBarracuda (SJS)C752351203492422.22%2881.18123453000020066.67%1200001.1300000011
15Nelson NogierBarracuda (SJS)D33033524056118000.00%1951815.7200009000050000.00%000000.1200000001
Team Total or Average986148253401-436273513061024139722349510.59%3981405114.2542801224561893011298827855.44%145200220.57721313384147
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Scott DarlingSharks43221730.8932.24249308938720000.78919430650
2Jeff GlassBarracuda (SJS)29131030.8862.81154023726290010.615132568201
Team Total or Average72352760.8902.46403321116515010010.719326868851


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alex SchoenbornBarracuda (SJS)RW231995-12-11Yes196 Lbs6 ft1NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Andrej SustrBarracuda (SJS)D281990-11-28No220 Lbs6 ft7NoNoNo3UFAPro & Farm2,750,000$0$0$NoLink
Andrew HammondBarracuda (SJS)G301988-10-02No215 Lbs6 ft2NoNoNo1UFAPro & Farm1,350,000$0$0$NoLink
Andrew MangiapaneBarracuda (SJS)LW221996-04-03No184 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Anton SlepyshevBarracuda (SJS)LW/RW241994-05-12No218 Lbs6 ft2NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Carter RowneyBarracuda (SJS)C291989-05-10No200 Lbs6 ft2NoNoNo3UFAPro & Farm1,111,111$0$0$NoLink
Christian ThomasBarracuda (SJS)RW261992-05-26No175 Lbs5 ft9NoNoNo1ELCPro & Farm525,000$0$0$NoLink
Connor CrispBarracuda (SJS)LW241994-04-08No226 Lbs6 ft3NoNoNo2ELCPro & Farm525,000$0$0$NoLink
Curtis ValkBarracuda (SJS)C261993-02-07No160 Lbs5 ft9NoNoNo1ELCPro & Farm600,000$0$0$NoLink
Daniel O'ReganBarracuda (SJS)C251994-01-30No180 Lbs5 ft9NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Dominik MasinBarracuda (SJS)D231996-01-31Yes198 Lbs6 ft2NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Dylan SadowyBarracuda (SJS)LW221996-04-01Yes180 Lbs6 ft1NoNoNo2ELCPro & Farm700,000$0$0$NoLink
Eric GelinasBarracuda (SJS)D271991-05-08No215 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Frederick GaudreauBarracuda (SJS)C251993-05-01No179 Lbs6 ft0NoNoNo1ELCPro & Farm1,000,000$0$0$NoLink
Gus YoungBarracuda (SJS)D271991-07-10No190 Lbs6 ft2NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Jeff GlassBarracuda (SJS)G331985-11-18No206 Lbs6 ft3NoNoNo3UFAPro & Farm525,000$0$0$NoLink
John McCarronBarracuda (SJS)C/RW261992-04-16No218 Lbs6 ft3NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Matt TennysonBarracuda (SJS)D281990-04-22No205 Lbs6 ft2NoNoNo2UFAPro & Farm1,200,000$0$0$NoLink
Nelson NogierBarracuda (SJS)D221996-05-26Yes191 Lbs6 ft2NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Reid BoucherBarracuda (SJS)LW/RW251993-09-07No195 Lbs5 ft10NoNoNo3ELCPro & Farm700,000$0$0$NoLink
Scott LaughtonBarracuda (SJS)C241994-05-29No190 Lbs6 ft1NoNoNo2ELCPro & Farm1,900,000$0$0$NoLink
Teemu PulkkinenBarracuda (SJS)LW/RW271992-01-01No185 Lbs5 ft10NoNoNo1RFAPro & Farm1,300,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2225.73197 Lbs6 ft11.77903,914$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Reid Boucher40122
2Teemu PulkkinenChristian Thomas30122
3Anton SlepyshevCurtis Valk20122
4Andrew MangiapaneFrederick Gaudreau10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson40122
2Eric Gelinas30122
320122
4Andrej SustrMatt Tennyson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Reid Boucher60122
2Teemu PulkkinenChristian Thomas40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson60122
2Eric Gelinas40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Reid Boucher40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson60122
2Eric Gelinas40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Andrej SustrMatt Tennyson60122
240122Eric Gelinas40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Reid Boucher40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Andrej SustrMatt Tennyson60122
2Eric Gelinas40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Reid BoucherAndrej SustrMatt Tennyson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Reid BoucherAndrej SustrMatt Tennyson
Extra Forwards
Normal PowerPlayPenalty Kill
Daniel O'Regan, Curtis Valk, Anton SlepyshevDaniel O'Regan, Curtis ValkAnton Slepyshev
Extra Defensemen
Normal PowerPlayPenalty Kill
, , Eric Gelinas, Eric Gelinas
Penalty Shots
, , Reid Boucher, , Teemu Pulkkinen
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000422000000000001100000042221.0004812007454541318557526569541431024400.00%5180.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
2Americans21100000990000000000002110000099020.50091827007454541345557526569545913164210330.00%7271.43%0970208546.52%985199349.42%550106551.64%190313711777511883451
3Bears3120000058-32110000034-11010000024-220.3335101501745454134255752656954441826581800.00%13284.62%0970208546.52%985199349.42%550106551.64%190313711777511883451
4Bruins5210100114772100100040431100001107370.70014284202745454131385575265695471213811832721.88%18383.33%0970208546.52%985199349.42%550106551.64%190313711777511883451
5Checkers22000000743220000007430000000000041.00071219017454541341557526569544814284310110.00%13192.31%0970208546.52%985199349.42%550106551.64%190313711777511883451
6Comets11000000211110000002110000000000021.0002460074545413225575265695415510156116.67%50100.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
7Condors2020000058-3000000000002020000058-300.0005101500745454133655752656954581334474125.00%15566.67%1970208546.52%985199349.42%550106551.64%190313711777511883451
8Crunch32000100853210001005501100000030350.8338132101745454137155752656954351744571119.09%15286.67%0970208546.52%985199349.42%550106551.64%190313711777511883451
9Devils41200010121022020000015-421000010115640.5001222340074545413885575265695410222389820420.00%18761.11%0970208546.52%985199349.42%550106551.64%190313711777511883451
10Falcons512000111012-23020001069-32100000143150.50010122211745454131155575265695411736381052428.33%19194.74%0970208546.52%985199349.42%550106551.64%190313711777511883451
11Griffins1010000034-11010000034-10000000000000.000358007454541335557526569541966307228.57%3166.67%0970208546.52%985199349.42%550106551.64%190313711777511883451
12Gulls3010101068-2100000105412010100014-340.66768140174545413565575265695467252453900.00%12283.33%0970208546.52%985199349.42%550106551.64%190313711777511883451
13Heat1010000023-1000000000001010000023-100.00024600745454132055752656954916138112.50%3166.67%0970208546.52%985199349.42%550106551.64%190313711777511883451
14IceCaps211000002201010000001-11100000021120.50024600745454135055752656954511121461715.88%8187.50%0970208546.52%985199349.42%550106551.64%190313711777511883451
15Icehogs11000000422110000004220000000000021.00046100074545413235575265695430612215120.00%6183.33%0970208546.52%985199349.42%550106551.64%190313711777511883451
16Marlies1010000002-21010000002-20000000000000.00000000745454132155752656954177825600.00%40100.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
17Monsters32100000111101010000026-42200000095440.667111829007454541384557526569548224226211327.27%10370.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
18Moose62201100181803110010068-2311010001210270.583183250017454541313055752656954169546314024416.67%27485.19%0970208546.52%985199349.42%550106551.64%190313711777511883451
19Penguins3030000029-72020000028-61010000001-100.00024600745454136355752656954722330731300.00%14192.86%0970208546.52%985199349.42%550106551.64%190313711777511883451
20Phantoms413000001014-42020000047-32110000067-120.25010203000745454131075575265695410334308018422.22%12283.33%0970208546.52%985199349.42%550106551.64%190313711777511883451
21Pirates1010000015-41010000015-40000000000000.0001230074545413165575265695431620273133.33%5260.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
22Rampage11000000422000000000001100000042221.00048120074545413225575265695440101224300.00%50100.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
23Reign6310000213121210000016514210000177080.66713233601745454131325575265695412343561002214.55%27388.89%0970208546.52%985199349.42%550106551.64%190313711777511883451
24Senators4110001111110311000107611000000145-150.625112031017454541383557526569547926468219421.05%18194.44%0970208546.52%985199349.42%550106551.64%190313711777511883451
25Sound Tigers32000010954100000103212200000063361.00091423007454541364557526569545814325915320.00%150100.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
26Stars1000000145-11000000145-10000000000010.50047110074545413265575265695432512254125.00%6266.67%0970208546.52%985199349.42%550106551.64%190313711777511883451
Total75293003256190192-2371216012428296-14381714020141089612820.54719033952911174545413166855752656954168449276016283425215.20%3404985.59%1970208546.52%985199349.42%550106551.64%190313711777511883451
28Wild11000000202000000000001100000020221.0002460174545413275575265695423312243266.67%60100.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
29Wolf Pack3120000056-1110000003122020000025-320.33351015007454541362557526569546518368011218.18%17194.12%0970208546.52%985199349.42%550106551.64%190313711777511883451
30Wolves11000000422110000004220000000000021.00047110074545413155575265695420814274125.00%60100.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
31Wolves1010000035-2000000000001010000035-200.00036900745454131655752656954316163011100.00%80100.00%0970208546.52%985199349.42%550106551.64%190313711777511883451
_Since Last GM Reset75293003256190192-2371216012428296-14381714020141089612820.54719033952911174545413166855752656954168449276016283425215.20%3404985.59%1970208546.52%985199349.42%550106551.64%190313711777511883451
_Vs Conference55192103255134136-227712012415770-132812902014776611610.5551342343681974545413123555752656954118737552311652473514.17%2353286.38%0970208546.52%985199349.42%550106551.64%190313711777511883451
_Vs Division198602114484531133011112023-38530100328226270.71148901380474545413459557526569543621071994271051918.10%781284.62%0970208546.52%985199349.42%550106551.64%190313711777511883451

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7582SOL2190339529166816844927601628111
All Games
GPWLOTWOTL SOWSOLGFGA
7529303256190192
Home Games
GPWLOTWOTL SOWSOLGFGA
37121612428296
Visitor Games
GPWLOTWOTL SOWSOLGFGA
381714201410896
Last 10 Games
WLOTWOTL SOWSOL
440002
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3425215.20%3404985.59%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
5575265695474545413
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
970208546.52%985199349.42%550106551.64%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
190313711777511883451


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0313Barracuda1Bruins2LBoxScore
4 - 2018-10-0525Moose4Barracuda3LXBoxScore
6 - 2018-10-0738Senators4Barracuda5WXXBoxScore
9 - 2018-10-1066Barracuda4Moose3WXBoxScore
10 - 2018-10-1173Barracuda3Reign2WBoxScore
13 - 2018-10-1487Falcons0Barracuda1WXXBoxScore
14 - 2018-10-15100Barracuda0Gulls4LBoxScore
16 - 2018-10-17118Moose0Barracuda1WBoxScore
17 - 2018-10-18126Barracuda1Reign0WBoxScore
20 - 2018-10-21145Crunch2Barracuda1LXBoxScore
23 - 2018-10-24164Senators0Barracuda1WBoxScore
25 - 2018-10-26181Barracuda3Falcons1WBoxScore
27 - 2018-10-28191Barracuda6Bruins1WBoxScore
28 - 2018-10-29203Barracuda3Americans5LBoxScore
30 - 2018-10-31215Bears0Barracuda1WBoxScore
33 - 2018-11-03233Barracuda1Wolf Pack2LBoxScore
34 - 2018-11-04245Icehogs2Barracuda4WBoxScore
36 - 2018-11-06263Barracuda1Gulls0WXBoxScore
39 - 2018-11-09277IceCaps1Barracuda0LBoxScore
42 - 2018-11-12300Pirates5Barracuda1LBoxScore
45 - 2018-11-15319Wolves2Barracuda4WBoxScore
47 - 2018-11-17335Barracuda2IceCaps1WBoxScore
49 - 2018-11-19351Bears4Barracuda2LBoxScore
51 - 2018-11-21367Barracuda2Heat3LBoxScore
53 - 2018-11-23381Barracuda1Wolf Pack3LBoxScore
55 - 2018-11-25394Wolf Pack1Barracuda3WBoxScore
58 - 2018-11-28413Phantoms4Barracuda3LBoxScore
62 - 2018-12-02442Senators2Barracuda1LBoxScore
64 - 2018-12-04458Barracuda0Penguins1LBoxScore
66 - 2018-12-06471Barracuda3Sound Tigers2WBoxScore
67 - 2018-12-07480Bruins0Barracuda1WXBoxScore
70 - 2018-12-10502Gulls4Barracuda5WXXBoxScore
73 - 2018-12-13521Barracuda1Falcons2LXXBoxScore
75 - 2018-12-15535Phantoms3Barracuda1LBoxScore
77 - 2018-12-17549Barracuda2Moose3LBoxScore
79 - 2018-12-19564Stars5Barracuda4LXXBoxScore
82 - 2018-12-22582Barracuda7Devils2WBoxScore
84 - 2018-12-24595Crunch3Barracuda4WBoxScore
86 - 2018-12-26604Barracuda4Admirals2WBoxScore
88 - 2018-12-28627Falcons5Barracuda3LBoxScore
91 - 2018-12-31644Barracuda2Wild0WBoxScore
93 - 2019-01-02657Barracuda3Condors4LBoxScore
94 - 2019-01-03668Devils3Barracuda0LBoxScore
97 - 2019-01-06689Comets1Barracuda2WBoxScore
98 - 2019-01-07704Barracuda2Bears4LBoxScore
101 - 2019-01-10720Falcons4Barracuda2LBoxScore
103 - 2019-01-12737Barracuda3Crunch0WBoxScore
105 - 2019-01-14752Marlies2Barracuda0LBoxScore
107 - 2019-01-16768Barracuda6Moose4WBoxScore
109 - 2019-01-18781Sound Tigers2Barracuda3WXXBoxScore
111 - 2019-01-20797Barracuda4Senators5LXXBoxScore
113 - 2019-01-22813Moose4Barracuda2LBoxScore
116 - 2019-01-25833Barracuda2Phantoms5LBoxScore
117 - 2019-01-26840Barracuda4Monsters2WBoxScore
118 - 2019-01-27850Penguins4Barracuda1LBoxScore
121 - 2019-01-30866Barracuda3Wolves5LBoxScore
123 - 2019-02-01885Penguins4Barracuda1LBoxScore
125 - 2019-02-03897Barracuda4Devils3WXXBoxScore
126 - 2019-02-04904Barracuda5Monsters3WBoxScore
127 - 2019-02-05920Bruins0Barracuda3WBoxScore
131 - 2019-02-09945Devils2Barracuda1LBoxScore
133 - 2019-02-11957Barracuda4Phantoms2WBoxScore
135 - 2019-02-13970Barracuda3Bruins4LXXBoxScore
137 - 2019-02-15979Checkers0Barracuda2WBoxScore
139 - 2019-02-17993Barracuda4Rampage2WBoxScore
140 - 2019-02-181000Barracuda2Condors4LBoxScore
142 - 2019-02-201013Barracuda6Americans4WBoxScore
143 - 2019-02-211021Checkers4Barracuda5WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2019-02-251047Griffins4Barracuda3LBoxScore
149 - 2019-02-271064Barracuda2Reign3LBoxScore
151 - 2019-03-011078Reign2Barracuda4WBoxScore
156 - 2019-03-061107Barracuda3Sound Tigers1WBoxScore
157 - 2019-03-071113Monsters6Barracuda2LBoxScore
160 - 2019-03-101132Reign3Barracuda2LXXBoxScore
162 - 2019-03-121147Barracuda1Reign2LXXBoxScore
167 - 2019-03-171169Griffins-Barracuda-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,568,113$ 1,988,611$ 1,746,389$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,979,688$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 5 15,317$ 76,585$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201875293003256190192-2371216012428296-143817140201410896128219033952911174545413166855752656954168449276016283425215.20%3404985.59%1970208546.52%985199349.42%550106551.64%190313711777511883451
Total Regular Season75293003256190192-2371216012428296-143817140201410896128219033952911174545413166855752656954168449276016283425215.20%3404985.59%1970208546.52%985199349.42%550106551.64%190313711777511883451