Senators

GP: 49 | W: 23 | L: 21 | OTL: 5 | P: 51
GF: 103 | GA: 113 | PP%: 10.65% | PK%: 85.96%
GM : Rob Rosanio | Morale : 50 | Team Overall : 58
Next Games #739 vs Pirates
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Buddy RobinsonX100.008588786688818664505965706244446850640
2Joakim NordstromXXX100.007944977469579658435756742566676450630
3Emil PetterssonX100.007367866367747762786257635444446350600
4Adam ErneXX100.008175857278576260565464592548486450590
5Kyle CriscuoloX100.006660816260798462785960605744446350590
6Mikhail Vorobyev (R)X100.008176916576666859745756665344446250590
7Daniel PribylX100.008074956374585957715654655144446050570
8Conor Garland (R)X100.006457796757666957505851574844445850560
9Hampus Gustafsson (R)XX98.008377976277555751644750654844445750550
10Filip Sandberg (R)XX98.007164886264586054684756605344445750540
11Nathan BeaulieuX100.007186827774698467255247662565666050650
12Michael Kapla (R)X100.007873896573657048254041623944445350570
13Ludwig BystromX100.007064836564656853255041593944445450560
14Macoy Erkamps (R)X100.007671866771677444253339603744445150560
15Lukas Bengtsson (R)X99.007163916463505052255039603744445350540
Scratches
1Ales HemskyX100.005240998073393968506072724281845450630
2Chris TerryXX100.007168797168565371506871646744446850620
3Yakov Trenin (R)X100.007976876376504955695551644844445750550
4Adam Musil (R)X100.007976876676505149614746634444445450530
5Quentin Shore (R)XX100.007769946769555845563846614444445350520
6Vincent Dunn (R)XX100.006670555770555750635244574244445150520
7Ryan MurphyX100.005941788067776970255250672561616050640
8Radim SimekX100.007670906670667051254642624044445550580
9Robin Norell (R)X91.987470826270727944253439593744445150560
10Dysin MayoX100.007472806572535547253741603944445150540
TEAM AVERAGE99.48736886677162665648515163434848585058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Linus Ullmark100.00678099856672597165643046466750660
2Chris Driedger100.00485366804648505448483044444950520
Scratches
TEAM AVERAGE100.0058678383566055635756304545585059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Luke Richardson62416665454654CAN491800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Emil PetterssonSenators (OTT)C49919281180511337661311.84%583617.06178151500001792063.64%86900000.6712000331
2Nathan BeaulieuSenators (OTT)D4781927-269510666452817.78%3699121.0945934165000041210.00%000000.5400100152
3Buddy RobinsonSenators (OTT)RW4411152613962069688761012.64%1169515.81101102600051583055.00%4000000.7517121424
4Joakim NordstromSenators (OTT)C/LW/RW429132281202582671513.43%867916.1800043000021591141.37%33600000.6500000223
5Kyle CriscuoloSenators (OTT)C49101222111002979706114.29%269214.13011480002911159.49%54800000.6412000136
6Adam ErneSenators (OTT)LW/RW4761420-82207675874106.90%483517.78246111390001220146.15%3900000.4800000115
7Daniel PribylSenators (OTT)C478101802603654551914.55%866114.071012200000173062.32%6900000.5412000410
8Ales HemskySenators (OTT)RW259514-320244600015.00%540916.374261265000022152.00%2500000.6800000310
9Chris TerrySenators (OTT)LW/RW313811-4160436676003.95%456218.1603314850001221163.89%3600000.3926000112
10Hampus GustafssonSenators (OTT)C/LW364711-1320698042089.52%762917.482469131000070054.74%61200000.3523000111
11Michael KaplaSenators (OTT)D473710-34959025302510.00%3191119.4012317147000183000.00%000100.2200010011
12Mikhail VorobyevSenators (OTT)C493710-81003969517105.88%1058712.00246171520004901061.30%38500000.3400000110
13Ludwig BystromSenators (OTT)D47189-2320813328343.57%3597020.65134191490000138000.00%000000.1900000001
14Robin NorellSenators (OTT)D430773440861811010.00%3276917.900002380000129000.00%000000.1800000001
15Macoy ErkampsSenators (OTT)D45246851510519110318.18%3680017.791122220000151020.00%000000.1500000030
16Mikhail GrabovskiSenatorsC/LW/RW6224120516120016.67%111619.34011018000021068.18%11000000.6902000000
17Conor GarlandSenators (OTT)RW16134140111317195.88%016010.0100000000000036.36%1100000.5000000001
18Filip SandbergSenators (OTT)C/RW150440201718203100.00%326517.70011758000000070.00%1000000.3000000001
19Radim SimekSenators (OTT)D23213-23754212140014.29%3048321.03101972000065000.00%000000.1200001020
20Lukas BengtssonSenators (OTT)D1811216028640225.00%636120.09101362000046000.00%000000.1100000002
21Ryan MurphySenators (OTT)D1011100130000.00%12222.500000100003000.00%000000.8900000000
Team Total or Average72792167259155404010119798634210810.66%2751244317.12223860191154600017131617858.06%309000100.42824232222731
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Linus UllmarkSenators (OTT)41211630.9002.24244244919100100.73719418422
2Chris DriedgerSenators (OTT)102520.8922.0954601191760000.7508841100
Team Total or Average51232150.8992.2129894511010860100.741274949522


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ErneSenators (OTT)LW/RW231995-04-20No210 Lbs6 ft1NoNoNo1ELCPro & Farm850,000$0$0$NoLink
Adam MusilSenators (OTT)C241994-03-26Yes202 Lbs6 ft3NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Ales HemskySenators (OTT)RW351983-08-12No185 Lbs6 ft0NoNoNo1UFAPro & Farm1,200,000$0$0$NoLink
Buddy RobinsonSenators (OTT)RW271991-09-30No232 Lbs6 ft6NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Chris DriedgerSenators (OTT)G241994-05-18No205 Lbs6 ft4NoNoNo3ELCPro & Farm725,000$0$0$NoLink
Chris TerrySenators (OTT)LW/RW291989-04-07No195 Lbs5 ft10NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Conor GarlandSenators (OTT)RW221996-03-10Yes165 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Daniel PribylSenators (OTT)C261992-12-17No192 Lbs6 ft4NoNoNo1ELCPro & Farm950,000$0$0$NoLink
Dysin MayoSenators (OTT)D221996-08-16No195 Lbs6 ft2NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Emil PetterssonSenators (OTT)C251994-01-14No164 Lbs6 ft2NoNoNo2ELCPro & Farm1,500,000$0$0$NoLink
Filip SandbergSenators (OTT)C/RW241994-07-23Yes181 Lbs5 ft9NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Hampus GustafssonSenators (OTT)C/LW251993-10-26Yes205 Lbs6 ft4NoNoNo1ELCPro & Farm1,500,000$0$0$NoLink
Joakim NordstromSenators (OTT)C/LW/RW261992-02-25No189 Lbs6 ft1NoNoNo2ELCPro & Farm1,250,000$0$0$NoLink
Kyle CriscuoloSenators (OTT)C261992-05-05No170 Lbs5 ft8NoNoNo1ELCPro & Farm655,000$0$0$NoLink
Linus UllmarkSenators (OTT)G251993-07-31No221 Lbs6 ft4NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Ludwig BystromSenators (OTT)D241994-07-20No175 Lbs6 ft1NoNoNo4ELCPro & Farm650,000$0$0$NoLink
Lukas BengtssonSenators (OTT)D241994-04-13Yes172 Lbs5 ft11NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Macoy ErkampsSenators (OTT)D231995-02-02Yes196 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Michael KaplaSenators (OTT)D241994-09-19Yes200 Lbs6 ft0NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Mikhail VorobyevSenators (OTT)C221997-01-05Yes207 Lbs6 ft2NoNoNo3ELCPro & Farm925,000$0$0$NoLink
Nathan BeaulieuSenators (OTT)D261992-12-05No205 Lbs6 ft2NoNoNo1ELCPro & Farm2,800,000$0$0$NoLink
Quentin ShoreSenators (OTT)C/RW241994-05-25Yes183 Lbs6 ft2NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Radim SimekSenators (OTT)D261992-09-20No196 Lbs5 ft11NoNoNo4ELCPro & Farm750,000$0$0$NoLink
Robin Norell (Out of Payroll)Senators (OTT)D231995-02-17Yes192 Lbs5 ft11NoNoNo2ELCPro & Farm600,000$0$0$YesLink
Ryan MurphySenators (OTT)D251993-03-30No185 Lbs5 ft11NoNoNo2ELCPro & Farm725,000$0$0$NoLink
Vincent DunnSenators (OTT)C/LW231995-09-14Yes190 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Yakov TreninSenators (OTT)C221997-01-13Yes201 Lbs6 ft2NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2724.78193 Lbs6 ft11.85871,481$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Hampus GustafssonFilip Sandberg40122
2Adam ErneEmil PetterssonDaniel Pribyl30122
3Mikhail VorobyevConor Garland20122
4Joakim NordstromKyle CriscuoloBuddy Robinson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuLukas Bengtsson40122
2Michael KaplaLudwig Bystrom30122
3Macoy Erkamps20122
4Nathan BeaulieuLukas Bengtsson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Hampus GustafssonFilip Sandberg60122
2Adam ErneEmil PetterssonMikhail Vorobyev40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuLukas Bengtsson60122
2Michael KaplaLudwig Bystrom40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joakim NordstromBuddy Robinson60122
2Emil PetterssonKyle Criscuolo40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Macoy ErkampsLukas Bengtsson60122
2Ludwig Bystrom40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joakim Nordstrom60122Macoy ErkampsNathan Beaulieu60122
2Kyle Criscuolo40122Ludwig Bystrom40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mikhail VorobyevConor Garland60122
2Emil PetterssonDaniel Pribyl40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuLukas Bengtsson60122
2Michael KaplaLudwig Bystrom40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Hampus GustafssonFilip SandbergNathan BeaulieuLukas Bengtsson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joakim NordstromEmil PetterssonBuddy RobinsonMichael KaplaMacoy Erkamps
Extra Forwards
Normal PowerPlayPenalty Kill
Daniel Pribyl, Kyle Criscuolo, Adam ErneFilip Sandberg, Hampus GustafssonMikhail Vorobyev
Extra Defensemen
Normal PowerPlayPenalty Kill
, Macoy Erkamps, Michael KaplaMacoy Erkamps, Michael Kapla
Penalty Shots
, Buddy Robinson, Hampus Gustafsson, Emil Pettersson, Daniel Pribyl
Goalie
#1 : Linus Ullmark, #2 : Chris Driedger


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans1010000024-21010000024-20000000000000.00023500352834112132230632742215221300.00%10100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
2Barracuda3110000167-1000000000003110000167-130.5006121800352834115232230632742631741471317.69%13376.92%0779132958.62%787140755.93%39568757.50%12098541197342586295
3Bears31100100761210001006421010000012-130.50071320003528341177322306327424313166515320.00%80100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
4Bruins3110100079-2210010006421010000015-440.6677132000352834115932230632742491230741317.69%15566.67%0779132958.62%787140755.93%39568757.50%12098541197342586295
5Checkers2110000045-1000000000002110000045-120.5004812013528341145322306327423914838800.00%40100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
6Comets11000000101000000000001100000010121.000123013528341113322306327421452220200.00%110100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
7Condors11000000211000000000001100000021121.00022400352834111132230632742114820600.00%40100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
8Crunch10000010431000000000001000001043121.00046100035283411243223063274222711236116.67%20100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
9Devils11000000321000000000001100000032121.00035800352834112332230632742261014214250.00%70100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
10Falcons3030000047-31010000023-12020000024-200.0004812003528341155322306327429215246114214.29%120100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
11Griffins11000000202000000000001100000020221.00024601352834119322306327422131213300.00%50100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
12Gulls312000005501010000012-12110000043120.333591400352834115932230632742611122751516.67%11281.82%0779132958.62%787140755.93%39568757.50%12098541197342586295
13IceCaps1010000023-11010000023-10000000000000.000235003528341118322306327422191427600.00%7271.43%0779132958.62%787140755.93%39568757.50%12098541197342586295
14Marlies10000010101100000101010000000000021.000101013528341117322306327422791613600.00%80100.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
15Monsters32100000651220000005231010000013-240.6676121800352834115532230632742692757849111.11%24195.83%0779132958.62%787140755.93%39568757.50%12098541197342586295
16Moose3120000028-6110000002022020000008-820.33324601352834116332230632742852136691000.00%17194.12%0779132958.62%787140755.93%39568757.50%12098541197342586295
17Penguins3110000157-2210000015501010000002-230.5005914003528341147322306327425725388117211.76%17382.35%0779132958.62%787140755.93%39568757.50%12098541197342586295
18Phantoms402001101013-3201000105502010010058-330.37510162600352834118132230632742115333610319210.53%15380.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
19Pirates11000000312110000003120000000000021.0003690035283411253223063274220101222200.00%5180.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
20Reign1010000013-21010000013-20000000000000.0001230035283411193223063274222719264125.00%7271.43%0779132958.62%787140755.93%39568757.50%12098541197342586295
21Sound Tigers1000000123-11000000123-10000000000010.50024600352834111732230632742941619500.00%7185.71%0779132958.62%787140755.93%39568757.50%12098541197342586295
22Stars1010000023-1000000000001010000023-100.0002460035283411153223063274226712235120.00%5340.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
Total49172101253103113-102388011325349426913001215064-14510.520103182285053528341197032230632742108632256810962162310.65%2353385.96%0779132958.62%787140755.93%39568757.50%12098541197342586295
24Wolf Pack42000020151051000001032132000010128481.000152338003528341187322306327429626577921314.29%16475.00%0779132958.62%787140755.93%39568757.50%12098541197342586295
25Wolves3120000078-13120000078-10000000000020.33371421003528341178322306327427728457210220.00%14285.71%0779132958.62%787140755.93%39568757.50%12098541197342586295
_Since Last GM Reset49172101253103113-102388011325349426913001215064-14510.520103182285053528341197032230632742108632256810962162310.65%2353385.96%0779132958.62%787140755.93%39568757.50%12098541197342586295
_Vs Conference361115012437788-111664011223833520511001213955-16370.514771362130135283411718322306327428092284178271652012.12%1712585.38%0779132958.62%787140755.93%39568757.50%12098541197342586295
_Vs Division21360021152511102200111262151114001002630-4110.2625290142013528341143232230632742454152242490981313.27%981287.76%0779132958.62%787140755.93%39568757.50%12098541197342586295

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4951L11031822859701086322568109605
All Games
GPWLOTWOTL SOWSOLGFGA
4917211253103113
Home Games
GPWLOTWOTL SOWSOLGFGA
238811325349
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2691301215064
Last 10 Games
WLOTWOTL SOWSOL
361000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2162310.65%2353385.96%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
3223063274235283411
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
779132958.62%787140755.93%39568757.50%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12098541197342586295


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0310Wolves3Senators2LBoxScore
3 - 2018-10-0418Senators3Phantoms4LXBoxScore
6 - 2018-10-0738Senators4Barracuda5LXXBoxScore
8 - 2018-10-0956Penguins3Senators2LXXBoxScore
9 - 2018-10-1063Senators1Bears2LBoxScore
12 - 2018-10-1380Pirates1Senators3WBoxScore
13 - 2018-10-1488Senators5Wolf Pack4WXXBoxScore
15 - 2018-10-16109Gulls2Senators1LBoxScore
17 - 2018-10-18119Senators3Checkers0WBoxScore
18 - 2018-10-19132Senators2Phantoms4LBoxScore
21 - 2018-10-22154Monsters1Senators3WBoxScore
23 - 2018-10-24164Senators0Barracuda1LBoxScore
25 - 2018-10-26184Phantoms2Senators3WXXBoxScore
28 - 2018-10-29201Wolves2Senators4WBoxScore
30 - 2018-10-31211Senators4Wolf Pack3WBoxScore
32 - 2018-11-02224Senators0Moose5LBoxScore
34 - 2018-11-04242Bears3Senators2LXBoxScore
36 - 2018-11-06260Senators0Penguins2LBoxScore
38 - 2018-11-08271Senators3Devils2WBoxScore
39 - 2018-11-09278Marlies0Senators1WXXBoxScore
43 - 2018-11-13306IceCaps3Senators2LBoxScore
46 - 2018-11-16326Phantoms3Senators2LBoxScore
48 - 2018-11-18342Senators1Bruins5LBoxScore
49 - 2018-11-19355Senators3Gulls1WBoxScore
51 - 2018-11-21369Moose0Senators2WBoxScore
54 - 2018-11-24386Senators0Moose3LBoxScore
56 - 2018-11-26401Monsters1Senators2WBoxScore
58 - 2018-11-28415Senators4Crunch3WXXBoxScore
60 - 2018-11-30428Penguins2Senators3WBoxScore
62 - 2018-12-02442Senators2Barracuda1WBoxScore
64 - 2018-12-04459Wolves3Senators1LBoxScore
66 - 2018-12-06470Senators1Comets0WBoxScore
68 - 2018-12-08486Senators1Checkers5LBoxScore
69 - 2018-12-09493Wolf Pack2Senators3WXXBoxScore
72 - 2018-12-12513Senators2Condors1WBoxScore
73 - 2018-12-13525Bears1Senators4WBoxScore
76 - 2018-12-16544Senators2Stars3LBoxScore
78 - 2018-12-18554Sound Tigers3Senators2LXXBoxScore
81 - 2018-12-21575Senators1Falcons2LBoxScore
83 - 2018-12-23588Reign3Senators1LBoxScore
85 - 2018-12-25599Senators2Griffins0WBoxScore
87 - 2018-12-27616Falcons3Senators2LBoxScore
90 - 2018-12-30641Senators3Wolf Pack1WBoxScore
92 - 2019-01-01648Bruins3Senators4WBoxScore
93 - 2019-01-02660Senators1Monsters3LBoxScore
96 - 2019-01-05681Americans4Senators2LBoxScore
97 - 2019-01-06694Senators1Falcons2LBoxScore
99 - 2019-01-08710Bruins1Senators2WXBoxScore
101 - 2019-01-10724Senators1Gulls2LBoxScore
103 - 2019-01-12739Pirates-Senators-
107 - 2019-01-16765Senators-Bears-
108 - 2019-01-17773Wolves-Senators-
111 - 2019-01-20797Barracuda-Senators-
113 - 2019-01-22815Senators-Sound Tigers-
115 - 2019-01-24827Senators-Heat-
116 - 2019-01-25832Rampage-Senators-
118 - 2019-01-27849Senators-Reign-
120 - 2019-01-29862Senators-Penguins-
121 - 2019-01-30868Reign-Senators-
124 - 2019-02-02893Admirals-Senators-
127 - 2019-02-05913Senators-Icehogs-
128 - 2019-02-06927Pirates-Senators-
129 - 2019-02-07937Senators-Icehogs-
133 - 2019-02-11956Senators-Wild-
134 - 2019-02-12963Penguins-Senators-
137 - 2019-02-15985Senators-Phantoms-
138 - 2019-02-16992Gulls-Senators-
142 - 2019-02-201015Senators-Phantoms-
143 - 2019-02-211023Gulls-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2019-02-251050Senators-Sound Tigers-
148 - 2019-02-261055Crunch-Senators-
152 - 2019-03-021083Devils-Senators-
153 - 2019-03-031089Senators-Bears-
157 - 2019-03-071115Phantoms-Senators-
161 - 2019-03-111142Crunch-Senators-
168 - 2019-03-181178Devils-Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,918,511$ 2,353,000$ 2,167,167$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,423,093$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 18,657$ 1,250,019$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201849172101253103113-102388011325349426913001215064-1451103182285053528341197032230632742108632256810962162310.65%2353385.96%0779132958.62%787140755.93%39568757.50%12098541197342586295
Total Regular Season49172101253103113-102388011325349426913001215064-1451103182285053528341197032230632742108632256810962162310.65%2353385.96%0779132958.62%787140755.93%39568757.50%12098541197342586295