Senators

GP: 75 | W: 37 | L: 29 | OTL: 9 | P: 83
GF: 164 | GA: 171 | PP%: 10.95% | PK%: 86.29%
GM : Rob Rosanio | Morale : 50 | Team Overall : 58
Next Games #1178 vs Devils
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Buddy RobinsonX100.008588786688818664505965706244446850640
2Ales HemskyX100.005240998073393968506072724281845450630
3Joakim NordstromXXX100.007944977469579658435756742566676450630
4Martin FrkX100.007644927171568576256670532552526950630
5Chris TerryXX100.007168797168565371506871646744446850620
6Nikita ScherbakXX100.006942907666657766255868582546466750610
7Emil PetterssonX100.007367866367747762786257635444446350600
8Adam ErneXX100.008175857278576260565464592548486450590
9Kyle CriscuoloX100.006660816260798462785960605744446350590
10Mikhail Vorobyev (R)X100.008176916576666859745756665344446250590
11Daniel PribylX100.008074956374585957715654655144446050570
12Yakov Trenin (R)X100.007976876376504955695551644844445750550
13Ryan MurphyX100.005941788067776970255250672561616050640
14Joakim RyanX100.006541957767717961255248692551516150630
15Michael Kapla (R)X100.007873896573657048254041623944445350570
16Ludwig BystromX100.007064836564656853255041593944445450560
17Robin Norell (R)X100.007470826270727944253439593744445150560
18Macoy Erkamps (R)X100.007671866771677444253339603744445150560
Scratches
1Hampus Gustafsson (R)XX100.008377976277555751644750654844445750550
2Filip Sandberg (R)XX100.007164886264586054684756605344445750540
3Adam Musil (R)X100.007976876676505149614746634444445450530
4Quentin Shore (R)XX100.007769946769555845563846614444445350520
5Vincent Dunn (R)XX100.006670555770555750635244574244445150520
6Dysin MayoX100.007472806572535547253741603944445150540
7Lukas Bengtsson (R)X100.007163916463505052255039603744445350540
TEAM AVERAGE100.00736487677161665747525363424848595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Linus Ullmark100.00678099856672597165643046466750660
2Chris Driedger100.00485366804648505448483044444950520
Scratches
TEAM AVERAGE100.0058678383566055635756304545585059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Luke Richardson62416665454654CAN491800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Emil PetterssonSenators (OTT)C7511294022807719111420359.65%6129317.25110112524900011072163.51%133200000.6212000442
2Joakim RyanSenators (OTT)D71102636-54201179411714288.55%63153621.64716231002710000156110.00%000000.4701000556
3Buddy RobinsonSenators (OTT)RW70181735101163011093144114112.50%18108815.551121559202112634154.90%10200000.64514231836
4Adam ErneSenators (OTT)LW/RW73102131-837510911013524507.41%8125317.17279182240002340345.31%6400000.4900001216
5Ales HemskySenators (OTT)RW46181230640276106145116.98%875316.38639231320000164346.94%4900000.8000000541
6Joakim NordstromSenators (OTT)C/LW/RW6810192961803813811217358.93%16106915.7202285601132491143.01%57200000.5400000223
7Nikita ScherbakSenators (OTT)LW/RW711117281215258811615449.48%597613.751341275000002128.85%5200000.5701000446
8Daniel PribylSenators (OTT)C731513281415476585112517.65%1098113.452133310000374061.17%10300000.5712001421
9Kyle CriscuoloSenators (OTT)C7511152691203712392132011.96%3101913.5901141000031392161.08%79900000.5112000137
10Chris TerrySenators (OTT)LW/RW51716232240759512611385.56%691617.97134201490001302159.02%6100000.50210000323
11Mikhail VorobyevSenators (OTT)C7551823-8220711188320406.02%1395012.6738112623701141261159.15%71000000.4800000111
12Hampus GustafssonSenators (OTT)C/LW5079162360841075081614.00%883516.7134711161000081156.37%81600000.3824000212
13Michael KaplaSenators (OTT)D7341115-1815141393971310.26%53143919.72224232370001135000.00%000100.2100010011
14Ludwig BystromSenators (OTT)D7331114-14801235547796.38%54149920.54358332320000203100.00%000000.1900000021
15Ryan MurphySenators (OTT)D1721012816025231441414.29%1040223.67213674011154100.00%000000.6000000141
16Macoy ErkampsSenators (OTT)D71210129841017231193410.53%58125917.741122330110233020.00%000000.1900100030
17Robin NorellSenators (OTT)D6318936801202218365.56%47112817.91101456000018400100.00%100000.1600000001
18Filip SandbergSenators (OTT)C/RW202680202128286187.14%436218.10033976000000066.67%1500000.4400000102
19Mikhail GrabovskiSenatorsC/LW/RW6224120516120016.67%111619.34011018000021068.18%11000000.6902000000
20Lukas BengtssonSenators (OTT)D26134-180431251320.00%1453320.51112485000064000.00%000000.1500000002
21Martin FrkSenators (OTT)RW11303-26011122361513.04%015614.26000060000132077.78%900000.3801000011
22Yakov TreninSenators (OTT)C2000000001000.00%021.350000000000000.00%000000.0000000000
Team Total or Average1160153273426347166014531536148621550510.30%4051957516.8837731103462481246272061291757.87%479500100.441239343434353
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Linus UllmarkSenators (OTT)65342460.8992.1738734714013850100.743356510534
2Chris DriedgerSenators (OTT)133530.8942.0370802242260000.700101065200
Team Total or Average78372990.8982.1545824916416110100.733457575734


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam ErneSenators (OTT)LW/RW231995-04-20No210 Lbs6 ft1NoNoNo1ELCPro & Farm850,000$0$0$NoLink
Adam MusilSenators (OTT)C241994-03-26Yes202 Lbs6 ft3NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Ales HemskySenators (OTT)RW351983-08-12No185 Lbs6 ft0NoNoNo1UFAPro & Farm1,200,000$0$0$NoLink
Buddy RobinsonSenators (OTT)RW271991-09-30No232 Lbs6 ft6NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Chris DriedgerSenators (OTT)G241994-05-18No205 Lbs6 ft4NoNoNo3ELCPro & Farm725,000$0$0$NoLink
Chris TerrySenators (OTT)LW/RW291989-04-07No195 Lbs5 ft10NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Daniel PribylSenators (OTT)C261992-12-17No192 Lbs6 ft4NoNoNo1ELCPro & Farm950,000$0$0$NoLink
Dysin MayoSenators (OTT)D221996-08-16No195 Lbs6 ft2NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Emil PetterssonSenators (OTT)C251994-01-14No164 Lbs6 ft2NoNoNo2ELCPro & Farm1,500,000$0$0$NoLink
Filip SandbergSenators (OTT)C/RW241994-07-23Yes181 Lbs5 ft9NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Hampus GustafssonSenators (OTT)C/LW251993-10-26Yes205 Lbs6 ft4NoNoNo1ELCPro & Farm1,500,000$0$0$NoLink
Joakim NordstromSenators (OTT)C/LW/RW271992-02-25No189 Lbs6 ft1NoNoNo2RFAPro & Farm1,250,000$0$0$NoLink
Joakim RyanSenators (OTT)D251993-06-17No185 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Kyle CriscuoloSenators (OTT)C261992-05-05No170 Lbs5 ft8NoNoNo1ELCPro & Farm655,000$0$0$NoLink
Linus UllmarkSenators (OTT)G251993-07-31No221 Lbs6 ft4NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Ludwig BystromSenators (OTT)D241994-07-20No175 Lbs6 ft1NoNoNo4ELCPro & Farm650,000$0$0$NoLink
Lukas BengtssonSenators (OTT)D241994-04-13Yes172 Lbs5 ft11NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Macoy ErkampsSenators (OTT)D241995-02-02Yes196 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Martin FrkSenators (OTT)RW251993-10-04No194 Lbs6 ft1NoNoNo2ELCPro & Farm1,200,000$0$0$NoLink
Michael KaplaSenators (OTT)D241994-09-19Yes200 Lbs6 ft0NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Mikhail VorobyevSenators (OTT)C221997-01-05Yes207 Lbs6 ft2NoNoNo3ELCPro & Farm925,000$0$0$NoLink
Nikita ScherbakSenators (OTT)LW/RW231995-12-29No190 Lbs6 ft2NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Quentin ShoreSenators (OTT)C/RW241994-05-25Yes183 Lbs6 ft2NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Robin NorellSenators (OTT)D241995-02-17Yes192 Lbs5 ft11NoNoNo2ELCPro & Farm600,000$0$0$NoLink
Ryan MurphySenators (OTT)D251993-03-30No185 Lbs5 ft11NoNoNo2ELCPro & Farm725,000$0$0$NoLink
Vincent DunnSenators (OTT)C/LW231995-09-14Yes190 Lbs6 ft0NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Yakov TreninSenators (OTT)C221997-01-13Yes201 Lbs6 ft2NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2724.85193 Lbs6 ft11.74817,778$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Chris TerryEmil PetterssonAles Hemsky40122
2Nikita ScherbakMikhail VorobyevMartin Frk30122
3Adam ErneDaniel Pribyl20122
4Joakim NordstromKyle CriscuoloBuddy Robinson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanRyan Murphy40122
2Michael KaplaLudwig Bystrom30122
3Robin NorellMacoy Erkamps20122
4Joakim RyanRyan Murphy10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nikita ScherbakEmil PetterssonAles Hemsky60122
2Adam ErneMikhail VorobyevChris Terry40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanRyan Murphy60122
2Michael KaplaLudwig Bystrom40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Joakim NordstromBuddy Robinson60122
2Daniel PribylKyle Criscuolo40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Macoy ErkampsRyan Murphy60122
2Robin NorellLudwig Bystrom40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Joakim Nordstrom60122Macoy ErkampsJoakim Ryan60122
2Kyle Criscuolo40122Robin NorellLudwig Bystrom40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Mikhail VorobyevMartin Frk60122
2Nikita Scherbak40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Joakim RyanRyan Murphy60122
2Michael KaplaLudwig Bystrom40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Chris TerryEmil PetterssonAles HemskyJoakim RyanRyan Murphy
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Joakim NordstromDaniel PribylBuddy RobinsonMichael KaplaMacoy Erkamps
Extra Forwards
Normal PowerPlayPenalty Kill
, Kyle Criscuolo, Adam ErneAles Hemsky, Nikita ScherbakMikhail Vorobyev
Extra Defensemen
Normal PowerPlayPenalty Kill
Robin Norell, Macoy Erkamps, Michael KaplaRobin NorellMacoy Erkamps, Michael Kapla
Penalty Shots
Chris Terry, Buddy Robinson, Martin Frk, Emil Pettersson, Daniel Pribyl
Goalie
#1 : Chris Driedger, #2 : Linus Ullmark


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1000000112-11000000112-10000000000010.50011200544852182450248751268751529300.00%4175.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
2Americans1010000024-21010000024-20000000000000.00023500544852182150248751268215221300.00%10100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
3Barracuda4110001111110100000105413110000167-150.62511203100544852187950248751268832358771815.56%19478.95%01219208758.41%1210213856.59%610106957.06%187913271801525907458
4Bears5220010013121210001006423120000078-150.50013243700544852181235024875126871183811125520.00%18383.33%01219208758.41%1210213856.59%610106957.06%187913271801525907458
5Bruins3110100079-2210010006421010000015-440.6677132000544852185950248751268491230741317.69%15566.67%01219208758.41%1210213856.59%610106957.06%187913271801525907458
6Checkers2110000045-1000000000002110000045-120.5004812015448521845502487512683914838800.00%40100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
7Comets11000000101000000000001100000010121.000123015448521813502487512681452220200.00%110100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
8Condors11000000211000000000001100000021121.00022400544852181150248751268114820600.00%40100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
9Crunch31000011963210000015321000001043150.83391625005448521866502487512686918326614214.29%80100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
10Devils22000000422110000001011100000032141.0004711015448521837502487512684015244011327.27%110100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
11Falcons3030000047-31010000023-12020000024-200.0004812005448521855502487512689215246114214.29%120100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
12Griffins11000000202000000000001100000020221.00024601544852189502487512682131213300.00%50100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
13Gulls532000001376321000009452110000043160.600132336015448521811350248751268103274211620210.00%20385.00%11219208758.41%1210213856.59%610106957.06%187913271801525907458
14Heat1010000012-1000000000001010000012-100.0001120054485218165024875126831142331200.00%90100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
15IceCaps1010000023-11010000023-10000000000000.000235005448521818502487512682191427600.00%7271.43%01219208758.41%1210213856.59%610106957.06%187913271801525907458
16Icehogs21001000514000000000002100100051441.000510150154485218395024875126826421341516.67%8187.50%01219208758.41%1210213856.59%610106957.06%187913271801525907458
17Marlies10000010101100000101010000000000021.000101015448521817502487512682791613600.00%80100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
18Monsters32100000651220000005231010000013-240.6676121800544852185550248751268692757849111.11%24195.83%01219208758.41%1210213856.59%610106957.06%187913271801525907458
19Moose3120000028-6110000002022020000008-820.33324601544852186350248751268852136691000.00%17194.12%01219208758.41%1210213856.59%610106957.06%187913271801525907458
20Penguins51200002813-53110000157-22010000136-340.4008142200544852187250248751268107378512724312.50%34585.29%01219208758.41%1210213856.59%610106957.06%187913271801525907458
21Phantoms714001101423-930200010610-441200100813-550.35714243800544852181515024875126818961661613738.11%30583.33%11219208758.41%1210213856.59%610106957.06%187913271801525907458
22Pirates32100000853321000008530000000000040.66781624005448521880502487512686031257211327.27%8187.50%01219208758.41%1210213856.59%610106957.06%187913271801525907458
23Rampage11000000312110000003120000000000021.00034700544852181950248751268217820200.00%4175.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
24Reign30200001512-72020000039-61000000123-110.1675813005448521871502487512687815417116318.75%18572.22%01219208758.41%1210213856.59%610106957.06%187913271801525907458
25Sound Tigers3110000156-11000000123-12110000033030.5005101501544852185450248751268281124571417.14%11190.91%01219208758.41%1210213856.59%610106957.06%187913271801525907458
26Stars1010000023-1000000000001010000023-100.0002460054485218155024875126826712235120.00%5340.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
Total75272902287164171-73714120115488817381317011337690-14830.5531642884520954485218152350248751268161148286216543383710.95%3504886.29%21219208758.41%1210213856.59%610106957.06%187913271801525907458
28Wild10000010321000000000001000001032121.00034700544852182150248751268238910800.00%10100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
29Wolf Pack42000020151051000001032132000010128481.000152338005448521887502487512689626577921314.29%16475.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
30Wolves10000010431100000104310000000000021.000461000544852181250248751268273818200.00%40100.00%01219208758.41%1210213856.59%610106957.06%187913271801525907458
31Wolves3120000078-13120000078-10000000000020.33371421005448521878502487512687728457210220.00%14285.71%01219208758.41%1210213856.59%610106957.06%187913271801525907458
_Since Last GM Reset75272902287164171-73714120115488817381317011337690-14830.5531642884520954485218152350248751268161148286216543383710.95%3504886.29%21219208758.41%1210213856.59%610106957.06%187913271801525907458
_Vs Conference53182101256116131-1525107011336055528814001235676-20560.5281162063220454485218108550248751268115932661411932463012.20%2533785.38%21219208758.41%1210213856.59%610106957.06%187913271801525907458
_Vs Division31710002126976-7134400111282801836001014148-7200.323691221910354485218624502487512686392093596971491912.75%1481987.16%11219208758.41%1210213856.59%610106957.06%187913271801525907458

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7583W116428845215231611482862165409
All Games
GPWLOTWOTL SOWSOLGFGA
7527292287164171
Home Games
GPWLOTWOTL SOWSOLGFGA
37141211548881
Visitor Games
GPWLOTWOTL SOWSOLGFGA
38131711337690
Last 10 Games
WLOTWOTL SOWSOL
630001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3383710.95%3504886.29%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
5024875126854485218
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1219208758.41%1210213856.59%610106957.06%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
187913271801525907458


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0310Wolves3Senators2LBoxScore
3 - 2018-10-0418Senators3Phantoms4LXBoxScore
6 - 2018-10-0738Senators4Barracuda5LXXBoxScore
8 - 2018-10-0956Penguins3Senators2LXXBoxScore
9 - 2018-10-1063Senators1Bears2LBoxScore
12 - 2018-10-1380Pirates1Senators3WBoxScore
13 - 2018-10-1488Senators5Wolf Pack4WXXBoxScore
15 - 2018-10-16109Gulls2Senators1LBoxScore
17 - 2018-10-18119Senators3Checkers0WBoxScore
18 - 2018-10-19132Senators2Phantoms4LBoxScore
21 - 2018-10-22154Monsters1Senators3WBoxScore
23 - 2018-10-24164Senators0Barracuda1LBoxScore
25 - 2018-10-26184Phantoms2Senators3WXXBoxScore
28 - 2018-10-29201Wolves2Senators4WBoxScore
30 - 2018-10-31211Senators4Wolf Pack3WBoxScore
32 - 2018-11-02224Senators0Moose5LBoxScore
34 - 2018-11-04242Bears3Senators2LXBoxScore
36 - 2018-11-06260Senators0Penguins2LBoxScore
38 - 2018-11-08271Senators3Devils2WBoxScore
39 - 2018-11-09278Marlies0Senators1WXXBoxScore
43 - 2018-11-13306IceCaps3Senators2LBoxScore
46 - 2018-11-16326Phantoms3Senators2LBoxScore
48 - 2018-11-18342Senators1Bruins5LBoxScore
49 - 2018-11-19355Senators3Gulls1WBoxScore
51 - 2018-11-21369Moose0Senators2WBoxScore
54 - 2018-11-24386Senators0Moose3LBoxScore
56 - 2018-11-26401Monsters1Senators2WBoxScore
58 - 2018-11-28415Senators4Crunch3WXXBoxScore
60 - 2018-11-30428Penguins2Senators3WBoxScore
62 - 2018-12-02442Senators2Barracuda1WBoxScore
64 - 2018-12-04459Wolves3Senators1LBoxScore
66 - 2018-12-06470Senators1Comets0WBoxScore
68 - 2018-12-08486Senators1Checkers5LBoxScore
69 - 2018-12-09493Wolf Pack2Senators3WXXBoxScore
72 - 2018-12-12513Senators2Condors1WBoxScore
73 - 2018-12-13525Bears1Senators4WBoxScore
76 - 2018-12-16544Senators2Stars3LBoxScore
78 - 2018-12-18554Sound Tigers3Senators2LXXBoxScore
81 - 2018-12-21575Senators1Falcons2LBoxScore
83 - 2018-12-23588Reign3Senators1LBoxScore
85 - 2018-12-25599Senators2Griffins0WBoxScore
87 - 2018-12-27616Falcons3Senators2LBoxScore
90 - 2018-12-30641Senators3Wolf Pack1WBoxScore
92 - 2019-01-01648Bruins3Senators4WBoxScore
93 - 2019-01-02660Senators1Monsters3LBoxScore
96 - 2019-01-05681Americans4Senators2LBoxScore
97 - 2019-01-06694Senators1Falcons2LBoxScore
99 - 2019-01-08710Bruins1Senators2WXBoxScore
101 - 2019-01-10724Senators1Gulls2LBoxScore
103 - 2019-01-12739Pirates1Senators3WBoxScore
107 - 2019-01-16765Senators5Bears4WBoxScore
108 - 2019-01-17773Wolves3Senators4WXXBoxScore
111 - 2019-01-20797Barracuda4Senators5WXXBoxScore
113 - 2019-01-22815Senators2Sound Tigers3LBoxScore
115 - 2019-01-24827Senators1Heat2LBoxScore
116 - 2019-01-25832Rampage1Senators3WBoxScore
118 - 2019-01-27849Senators2Reign3LXXBoxScore
120 - 2019-01-29862Senators3Penguins4LXXBoxScore
121 - 2019-01-30868Reign6Senators2LBoxScore
124 - 2019-02-02893Admirals2Senators1LXXBoxScore
127 - 2019-02-05913Senators3Icehogs0WBoxScore
128 - 2019-02-06927Pirates3Senators2LBoxScore
129 - 2019-02-07937Senators2Icehogs1WXBoxScore
133 - 2019-02-11956Senators3Wild2WXXBoxScore
134 - 2019-02-12963Penguins2Senators0LBoxScore
137 - 2019-02-15985Senators0Phantoms3LBoxScore
138 - 2019-02-16992Gulls2Senators3WBoxScore
142 - 2019-02-201015Senators3Phantoms2WBoxScore
143 - 2019-02-211023Gulls0Senators5WBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2019-02-251050Senators1Sound Tigers0WBoxScore
148 - 2019-02-261055Crunch2Senators1LXXBoxScore
152 - 2019-03-021083Devils0Senators1WBoxScore
153 - 2019-03-031089Senators1Bears2LBoxScore
157 - 2019-03-071115Phantoms5Senators1LBoxScore
161 - 2019-03-111142Crunch1Senators4WBoxScore
168 - 2019-03-181178Devils-Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
1 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,043,966$ 2,208,000$ 2,202,167$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 2,253,982$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 5 17,799$ 88,995$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201875272902287164171-73714120115488817381317011337690-14831642884520954485218152350248751268161148286216543383710.95%3504886.29%21219208758.41%1210213856.59%610106957.06%187913271801525907458
Total Regular Season75272902287164171-73714120115488817381317011337690-14831642884520954485218152350248751268161148286216543383710.95%3504886.29%21219208758.41%1210213856.59%610106957.06%187913271801525907458