Wolves

GP: 22 | W: 16 | L: 6 | OTL: 0 | P: 32
GF: 30 | GA: 18 | PP%: 16.81% | PK%: 90.82%
GM : Matt Landers | Morale : 50 | Team Overall : 56
Next Games vs Senators
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Dale WeiseX100.008257867377577259445959592570726250610
2Scott EansorXX100.006961866861646756704562605944446150560
3Deven Sideroff (R)X100.006965776365707648504447584544445350530
4Martin MarincinX100.008077886677575953254641693961615550600
Scratches
1Micheal HaleyXXX100.008299366676518457425856582562635950580
2Anthony Richard (R)XX100.006659826259747958735161595844446150570
3Henrik Haapala (R)XX100.006759876759504956505354595144445750540
4Michael Brodzinski (R)X100.007269796569555846253641593944445150540
TEAM AVERAGE100.00736878666860685447495360435252575057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Eddie Pasquale99.00635569846566646968673044446450630
2Dylan Ferguson (R)100.00425063734043404640403044444350460
Scratches
TEAM AVERAGE99.5053536679535552585454304444545055
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dave Lowry72745753454658CAN533600,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Martin MarincinWolves (VEG)D226612-25357331430013.95%2444720.325053565000041210.00%000000.5400001212
2Dale WeiseWolves (VEG)RW22281025210323938005.26%131814.48000012011080135.71%2800000.6311001032
3Scott EansorWolves (VEG)C/LW224592135202841009.76%328212.82000212000101058.33%1200000.6401001313
4Deven SideroffWolves (VEG)RW222352120262830006.67%422110.0500000000000144.44%3600000.4500000111
5Anthony RichardWolves (VEG)C/LW7123014015870014.29%09613.7400017000001053.85%7800000.6200000020
Team Total or Average95152439414420166134159009.43%32136514.3750538980111514348.70%15400000.5712003688
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Eddie PasqualeWolves (VEG)2216600.9141.88130825414770010.6673220501
2Dylan FergusonWolves (VEG)10000.8334.001500160000.0000022000
Team Total or Average2316600.9131.91132325424830010.66732222501


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Anthony RichardWolves (VEG)C/LW211996-12-19Yes163 Lbs5 ft10NoNoNo2ELCPro & Farm650,000$650,000$Link
Dale WeiseWolves (VEG)RW301988-08-05No206 Lbs6 ft2NoNoNo2UFAPro & Farm2,750,000$2,750,000$Link
Deven SideroffWolves (VEG)RW211997-04-14Yes171 Lbs5 ft11NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Dylan FergusonWolves (VEG)C/LW/RW201998-09-20Yes189 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Eddie PasqualeWolves (VEG)G271990-11-19No215 Lbs6 ft3NoNoNo2RFAPro & Farm525,000$525,000$Link
Henrik HaapalaWolves (VEG)LW/RW241994-02-28Yes156 Lbs5 ft9NoNoNo4ELCPro & Farm925,000$925,000$925,000$925,000$Link
Martin MarincinWolves (VEG)D261992-02-17No210 Lbs6 ft4NoNoNo1ELCPro & Farm1,000,000$Link
Michael BrodzinskiWolves (VEG)D231995-05-28Yes195 Lbs5 ft11NoNoNo2ELCPro & Farm925,000$925,000$Link
Micheal HaleyWolves (VEG)C/LW/RW311987-07-14No205 Lbs5 ft11NoNoNo3UFAPro & Farm825,000$825,000$825,000$Link
Scott EansorWolves (VEG)C/LW221996-01-03No174 Lbs5 ft9NoNoNo4ELCPro & Farm720,000$720,000$720,000$720,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1024.50188 Lbs6 ft02.60952,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Scott EansorDale Weise30122
3Deven Sideroff20122
4Dale Weise10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin Marincin40122
230122
3Martin Marincin20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Scott EansorDale Weise40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin Marincin60122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Dale Weise40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin Marincin60122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Martin Marincin60122
24012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Dale Weise40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Martin Marincin60122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Martin Marincin
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Martin Marincin
Extra Forwards
Normal PowerPlayPenalty Kill
Deven Sideroff, Scott Eansor, Deven Sideroff, Scott Eansor
Extra Defensemen
Normal PowerPlayPenalty Kill
, Martin Marincin, Martin Marincin,
Penalty Shots
, , Dale Weise, ,
Goalie
#1 : Eddie Pasquale, #2 : Dylan Ferguson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals22000000835220000008350000000000041.00081523013218122452191851985286183717423.53%90100.00%034169948.78%27362543.68%15630950.49%527382552152245119
2Americans11000000422000000000001100000042221.00047110032181223521918519852294165240.00%20100.00%034169948.78%27362543.68%15630950.49%527382552152245119
3Checkers21000010532000000000002100001053241.0005813013218122432191851985441814349222.22%70100.00%034169948.78%27362543.68%15630950.49%527382552152245119
4Comets22000000927110000005231100000040441.00091827013218122652191851985397354213538.46%8187.50%034169948.78%27362543.68%15630950.49%527382552152245119
5Devils1010000023-11010000023-10000000000000.00024600321812237219185198523914219111.11%50100.00%034169948.78%27362543.68%15630950.49%527382552152245119
6Griffins3210000078-1220000005321010000025-340.6677142100321812273219185198561255364700.00%19478.95%034169948.78%27362543.68%15630950.49%527382552152245119
7Gulls11000000422000000000001100000042221.000481200321812223219185198526814233133.33%7185.71%034169948.78%27362543.68%15630950.49%527382552152245119
8Heat11000000101110000001010000000000021.0001230132181223021918519851691422600.00%70100.00%034169948.78%27362543.68%15630950.49%527382552152245119
9Icehogs2110000045-1000000000002110000045-120.500481200321812267219185198547168521000.00%4175.00%034169948.78%27362543.68%15630950.49%527382552152245119
10Moose1010000023-11010000023-10000000000000.0002460032181223021918519853051431300.00%7185.71%134169948.78%27362543.68%15630950.49%527382552152245119
11Rampage22000000523000000000002200000052341.00058130132181224621918519854312163611218.18%70100.00%034169948.78%27362543.68%15630950.49%527382552152245119
12Senators2110000056-1000000000002110000056-120.5005914103218122572191851985531219481119.09%6183.33%034169948.78%27362543.68%15630950.49%527382552152245119
Since Last GM Reset221560001063432010730000030181212830001033258320.7276311918215321812260421918519854841452454761131916.81%98990.82%134169948.78%27362543.68%15630950.49%527382552152245119
14Stars11000000615110000006150000000000021.000612180032181223321918519852036315120.00%20100.00%034169948.78%27362543.68%15630950.49%527382552152245119
Total221560001063432010730000030181212830001033258320.7276311918215321812260421918519854841452454761131916.81%98990.82%134169948.78%27362543.68%15630950.49%527382552152245119
Vs Conference1713300010502921871000002612149620001024177280.82450941440532181224572191851985352111184353871618.39%73691.78%034169948.78%27362543.68%15630950.49%527382552152245119
Vs Division47300000144102410000062423200000826141.75014284202321812211821918519858124638722627.27%22290.91%034169948.78%27362543.68%15630950.49%527382552152245119
18Wolves1010000013-21010000013-20000000000000.0001230032181222021918519853261619400.00%80100.00%034169948.78%27362543.68%15630950.49%527382552152245119

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2232L16311918260448414524547615
All Games
GPWLOTWOTL SOWSOLGFGA
2215600106343
Home Games
GPWLOTWOTL SOWSOLGFGA
107300003018
Visitor Games
GPWLOTWOTL SOWSOLGFGA
128300103325
Last 10 Games
WLOTWOTL SOWSOL
630010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1131916.81%98990.82%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
21918519853218122
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
34169948.78%27362543.68%15630950.49%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
527382552152245119


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0310Wolves3Senators2WBoxScore
4 - 2018-10-0527Heat0Wolves1WBoxScore
7 - 2018-10-0848Wolves3Wolves1LBoxScore
8 - 2018-10-0959Wolves1Rampage0WBoxScore
10 - 2018-10-1167Wolves3Icehogs2WBoxScore
12 - 2018-10-1382Admirals0Wolves3WBoxScore
14 - 2018-10-1598Wolves2Griffins5LBoxScore
16 - 2018-10-17115Griffins1Wolves2WBoxScore
17 - 2018-10-18127Wolves4Rampage2WBoxScore
20 - 2018-10-21144Griffins2Wolves3WBoxScore
21 - 2018-10-22153Wolves4Americans2WBoxScore
23 - 2018-10-24170Wolves1Icehogs3LBoxScore
25 - 2018-10-26183Stars1Wolves6WBoxScore
28 - 2018-10-29201Wolves2Senators4LBoxScore
29 - 2018-10-30209Wolves1Checkers0WBoxScore
31 - 2018-11-01217Admirals3Wolves5WBoxScore
34 - 2018-11-04241Moose3Wolves2LBoxScore
36 - 2018-11-06261Wolves4Comets0WBoxScore
37 - 2018-11-07269Wolves4Checkers3WXXBoxScore
39 - 2018-11-09279Comets2Wolves5WBoxScore
42 - 2018-11-12299Wolves4Gulls2WBoxScore
43 - 2018-11-13309Devils3Wolves2LBoxScore
46 - 2018-11-16328Wolves-Wild-
48 - 2018-11-18340Sound Tigers-Wolves-
50 - 2018-11-20356Wolves-Condors-
52 - 2018-11-22371Bruins-Wolves-
54 - 2018-11-24385Wolves-Admirals-
56 - 2018-11-26398Wolves-Gulls-
57 - 2018-11-27405Marlies-Wolves-
60 - 2018-11-30427Wolves-Phantoms-
61 - 2018-12-01434Checkers-Wolves-
64 - 2018-12-04459Wolves-Senators-
65 - 2018-12-05464Wolves-Wolves-
68 - 2018-12-08483Wolves-Condors-
69 - 2018-12-09496Stars-Wolves-
73 - 2018-12-13523Marlies-Wolves-
75 - 2018-12-15534Wolves-Heat-
77 - 2018-12-17552Wolves-Wild-
78 - 2018-12-18558Admirals-Wolves-
81 - 2018-12-21574Wolves-Stars-
82 - 2018-12-22587Wolves-IceCaps-
83 - 2018-12-23589Griffins-Wolves-
87 - 2018-12-27618Wolves-IceCaps-
88 - 2018-12-28620Americans-Wolves-
91 - 2018-12-31645Wolves-Crunch-
92 - 2019-01-01651Rampage-Wolves-
95 - 2019-01-04675Wolves-Comets-
96 - 2019-01-05682Rampage-Wolves-
100 - 2019-01-09713Heat-Wolves-
102 - 2019-01-11727Wolves-Icehogs-
103 - 2019-01-12742Condors-Wolves-
106 - 2019-01-15757Wolves-Wolves-
108 - 2019-01-17774Wolf Pack-Wolves-
109 - 2019-01-18785Wolves-Americans-
112 - 2019-01-21806Wolves-Wolves-
113 - 2019-01-22816Wolves-Monsters-
117 - 2019-01-26836Reign-Wolves-
119 - 2019-01-28851Wolves-Pirates-
121 - 2019-01-30866Barracuda-Wolves-
122 - 2019-01-31876Wolves-Marlies-
125 - 2019-02-03898Icehogs-Wolves-
127 - 2019-02-05915Wolves-Wolves-
128 - 2019-02-06923Wolves-Falcons-
129 - 2019-02-07931Heat-Wolves-
133 - 2019-02-11960Icehogs-Wolves-
138 - 2019-02-16990IceCaps-Wolves-
142 - 2019-02-201016Wild-Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221027Wolves-Griffins-
146 - 2019-02-241045Bears-Wolves-
147 - 2019-02-251054Wolves-Rampage-
151 - 2019-03-011077Penguins-Wolves-
155 - 2019-03-051103Wolves-Bruins-
157 - 2019-03-071112Devils-Wolves-
161 - 2019-03-111139Pirates-Wolves-
166 - 2019-03-161162Pirates-Wolves-
167 - 2019-03-171170Wolves-Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
952,000$ 749,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
400,212$ 0$ 242,092$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 9,183$ 1,147,875$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018221560001063432010730000030181212830001033258326311918215321812260421918519854841452454761131916.81%98990.82%134169948.78%27362543.68%15630950.49%527382552152245119
Total Regular Season221560001063432010730000030181212830001033258326311918215321812260421918519854841452454761131916.81%98990.82%134169948.78%27362543.68%15630950.49%527382552152245119