Marlies

GP: 5 | W: 4 | L: 1 | OTL: 0 | P: 8
GF: 5 | GA: 4 | PP%: 7.69% | PK%: 84.00%
GM : Stu Lap | Morale : 50 | Team Overall : 60
Next Games vs Wild
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Andreas MartinsenXXX100.008685876885788458505158725559596450630
2Brendan Leipsic (A)XX99.006741917159657063547459552550506450600
3Carter VerhaegheX100.007368836468656664806461645844446550600
4Mark McNeillXX99.007878776678747858734962655944446350600
5Sam CarrickX100.006768666568808562786258605545456350600
6Frederik GauthierX100.008381897081768253664951674847476050590
7Alexander Volkov (R)XX100.007471826471666861505661635844446250590
8Andreas JohnssonX100.006765736365545169506569626644446650590
9Dmytro Timashov (R)X100.007267856767758059505657625444446250590
10Zach Redmond (C)X100.007776807376697162255354695159596250640
11Andreas Borgman (R)X100.009046837774637760255348602548486150620
12Andy WelinskiX100.007572817372737760255253645044446250620
13Scott Harrington (A)X97.007644917075625256254948732554545950610
14Jake Walman (R)X97.007874877174656950254541633944445550590
Scratches
1Casey BaileyX94.007974896974818760505758665544446450610
2Filip Chytil (R)X93.767065806565636363796260625745456350590
3Rocco GrimaldiXX100.006355827155768061765563596047486350590
4Dominic Toninato (R)X100.006741897663517261605555612548486050580
5Calvin Thurkauf (R)X100.007875856575768351644751634844445850570
6Reid Gardiner (R)X100.007669936569505150504947624544445450530
7Nikita Korostelev (R)X100.007771926571505149504548624644445450530
8Petter GranbergX64.287876827076748247253740633848485450600
9Rinat ValievX100.008076886476606352254345644345455650580
TEAM AVERAGE97.57756784687167715850535464474747615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Hutchinson100.00675873817069687471703056566850670
2Antoine Bibeau100.00636784826369596866653044446550640
Scratches
1Christopher Gibson100.00575569725762616564633045456050590
2C.J. Motte100.00595366636266576466643044446150590
TEAM AVERAGE100.0062587375636761686766304747645062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe37797575535663CAN371900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mark McNeillMarlies (TOR)C/RW53697801412130023.08%19118.36022422000001066.30%9200001.9601000201
2Scott HarringtonMarlies (TOR)D5033300368000.00%512124.24000618000021000.00%000000.4900000010
3Brendan LeipsicMarlies (TOR)C/LW5022-220255000.00%08216.56000150000130042.86%700000.4800000000
4Petter GranbergMarlies (TOR)D5022-1951323000.00%712024.02000317000017000.00%000000.3300010010
5Carter VerhaegheMarlies (TOR)C5011-340376000.00%15010.0200000000020055.00%4000000.4001000000
6Casey BaileyMarlies (TOR)RW510112011980012.50%111723.460002180002230060.00%1000000.1733000001
7Rocco GrimaldiMarlies (TOR)C/RW1011100031000.00%01717.670000300000000.00%000001.1300000000
8Stefan MatteauMaple LeafsLW1011100201000.00%02121.9300003000030016.67%600000.9100000000
9Dmytro TimashovMarlies (TOR)LW51010400130033.33%0479.4510124000180033.33%300000.4211000000
10Filip ChytilMarlies (TOR)C2000-100110000.00%094.9200000000000085.71%700000.0000000000
11Alexander VolkovMarlies (TOR)LW/RW5000-320324000.00%0448.860000000000000.00%100000.0011000000
12Sam CarrickMarlies (TOR)C50001804165000.00%09218.53000318000070062.22%9000000.0012000000
13Jake WalmanMarlies (TOR)D50003401777000.00%612424.88000418000013000.00%000000.0000000000
14Nikita SoshnikovMaple LeafsLW/RW1000-120133000.00%12222.2300023000070033.33%1500000.0000000000
15Andreas JohnssonMarlies (TOR)LW5000-140534000.00%2346.880000000000000.00%200000.0002000000
16Rinat ValievMarlies (TOR)D1000140200000.00%12323.230000300003000.00%000000.0000000000
Team Total or Average61516216535817771007.04%25102116.741232713800031231058.97%27300000.41611010222
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonMarlies (TOR)54100.9051.73313009950000.8001550010
Team Total or Average54100.9051.73313009950000.8001550010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alexander VolkovMarlies (TOR)LW/RW211997-08-02Yes191 Lbs6 ft1NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Andreas BorgmanMarlies (TOR)D231995-06-18Yes191 Lbs6 ft0NoNoNo3ELCPro & Farm1,000,000$1,000,000$1,000,000$Link
Andreas JohnssonMarlies (TOR)LW231994-11-20No190 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$500,000$Link
Andreas MartinsenMarlies (TOR)C/LW/RW281990-06-12No220 Lbs6 ft3NoNoNo4UFAPro & Farm650,000$650,000$650,000$650,000$Link
Andy WelinskiMarlies (TOR)D251993-04-27No205 Lbs6 ft1NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Antoine BibeauMarlies (TOR)D241994-04-30No210 Lbs6 ft3NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Brendan LeipsicMarlies (TOR)C/LW241994-05-18No180 Lbs5 ft10NoNoNo2ELCPro & Farm650,000$650,000$Link
C.J. MotteMarlies (TOR)G261991-12-10No176 Lbs6 ft0NoNoNo4ELCPro & Farm650,000$650,000$650,000$650,000$Link
Calvin ThurkaufMarlies (TOR)C211997-06-27Yes204 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Carter VerhaegheMarlies (TOR)C231995-08-14No181 Lbs6 ft1NoNoNo1ELCPro & Farm700,000$Link
Casey BaileyMarlies (TOR)RW261991-10-27No195 Lbs6 ft3NoNoNo3ELCPro & Farm925,000$925,000$925,000$Link
Christopher GibsonMarlies (TOR)D251992-12-27No188 Lbs6 ft1NoNoNo2ELCPro & Farm650,000$650,000$Link
Dmytro TimashovMarlies (TOR)LW211996-09-30Yes195 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$500,000$Link
Dominic ToninatoMarlies (TOR)C241994-03-09Yes165 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Filip Chytil (Out of Payroll)Marlies (TOR)C191999-09-05Yes178 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Frederik GauthierMarlies (TOR)C231995-04-26No238 Lbs6 ft5NoNoNo1ELCPro & Farm900,000$Link
Jake WalmanMarlies (TOR)D221996-02-20Yes170 Lbs6 ft1NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Mark McNeillMarlies (TOR)C/RW251993-02-21No214 Lbs6 ft2NoNoNo1ELCPro & Farm650,000$Link
Michael HutchinsonMarlies (TOR)D281990-03-01No202 Lbs6 ft3NoNoNo4UFAPro & Farm1,300,000$1,300,000$1,300,000$1,300,000$Link
Nikita KorostelevMarlies (TOR)RW211997-02-08Yes195 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Petter Granberg (Out of Payroll)Marlies (TOR)D261992-08-26No200 Lbs6 ft3NoNoNo2ELCPro & Farm650,000$650,000$Link
Reid GardinerMarlies (TOR)RW221996-01-18Yes193 Lbs5 ft11NoNoNo3ELCPro & Farm550,000$550,000$550,000$Link
Rinat ValievMarlies (TOR)D231995-05-11No215 Lbs6 ft3NoNoNo1ELCPro & Farm750,000$Link
Rocco GrimaldiMarlies (TOR)C/RW251993-02-07No180 Lbs5 ft6NoNoNo2ELCPro & Farm675,000$675,000$Link
Sam CarrickMarlies (TOR)C261992-02-03No188 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$Link
Scott HarringtonMarlies (TOR)D251993-03-09No219 Lbs6 ft2NoNoNo2ELCPro & Farm675,000$675,000$Link
Zach RedmondMarlies (TOR)D301988-07-25No208 Lbs6 ft2NoNoNo4UFAPro & Farm650,000$650,000$650,000$650,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2724.04196 Lbs6 ft12.52700,926$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Sam Carrick40122
2Mark McNeill30122
3Brendan LeipsicCarter VerhaegheAlexander Volkov20122
4Andreas Johnsson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Scott Harrington40122
2Jake Walman30122
3Scott Harrington20122
4Jake Walman10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Sam Carrick60122
2Mark McNeill40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Scott Harrington60122
2Jake Walman40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Sam Carrick40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Scott Harrington60122
2Jake Walman40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Scott Harrington60122
240122Jake Walman40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Sam Carrick40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Scott Harrington60122
2Jake Walman40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Sam CarrickScott Harrington
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Sam CarrickScott Harrington
Extra Forwards
Normal PowerPlayPenalty Kill
Dmytro Timashov, Carter Verhaeghe, Brendan LeipsicDmytro Timashov, Carter VerhaegheBrendan Leipsic
Extra Defensemen
Normal PowerPlayPenalty Kill
Scott Harrington, , Jake WalmanScott Harrington, Jake Walman
Penalty Shots
, , , Sam Carrick, Mark McNeill
Goalie
#1 : Michael Hutchinson, #2 : Antoine Bibeau


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Heat20000020532100000102111000001032141.00055100052462745212715331327381218.33%9188.89%07113552.59%9616060.00%356256.45%12587127386129
2IceCaps10000010211100000102110000000000021.0002240052462545212715248819400.00%4175.00%07113552.59%9616060.00%356256.45%12587127386129
3Monsters11000000633000000000001100000063321.00061218005246284521271516410206116.67%5180.00%07113552.59%9616060.00%356256.45%12587127386129
Since Last GM Reset511000301495301000205412100001095480.8001421350052469445212715953259922627.69%25484.00%07113552.59%9616060.00%356256.45%12587127386129
Total511000301495301000205412100001095480.8001421350052469445212715953259922627.69%25484.00%07113552.59%9616060.00%356256.45%12587127386129
Vs Conference40100030862301000205411000001032160.75089170052466645212715792849722015.00%20385.00%07113552.59%9616060.00%356256.45%12587127386129
Vs Division1000003012-11000002012-10000001000063.00012300524614452127152271415400.00%7185.71%07113552.59%9616060.00%356256.45%12587127386129
8Wild1010000012-11010000012-10000000000000.00012300524614452127152271415400.00%7185.71%07113552.59%9616060.00%356256.45%12587127386129

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
58SOW3142135949532599200
All Games
GPWLOTWOTL SOWSOLGFGA
5110030149
Home Games
GPWLOTWOTL SOWSOLGFGA
301002054
Visitor Games
GPWLOTWOTL SOWSOLGFGA
210001095
Last 10 Games
WLOTWOTL SOWSOL
110030
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2627.69%25484.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
452127155246
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
7113552.59%9616060.00%356256.45%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12587127386129


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-1713Wild2Marlies1LBoxScore
2 - 2018-09-1825Marlies6Monsters3WBoxScore
4 - 2018-09-2044IceCaps1Marlies2WXXBoxScore
5 - 2018-09-2163Heat1Marlies2WXXBoxScore
7 - 2018-09-2386Marlies3Heat2WXXBoxScore
8 - 2018-09-2496Comets-Marlies-
9 - 2018-09-25107Marlies-Americans-
11 - 2018-09-27125Americans-Marlies-
12 - 2018-09-28135Marlies-IceCaps-
Trade Deadline --- Trades can’t be done after this day is simulated!
13 - 2018-09-29147Marlies-Comets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
2 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,827,500$ 1,875,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 8 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT