Marlies

GP: 20 | W: 11 | L: 5 | OTL: 4 | P: 26
GF: 29 | GA: 20 | PP%: 6.45% | PK%: 89.74%
GM : Stu Lap | Morale : 50 | Team Overall : 60
Next Games vs Heat
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Andreas MartinsenXXX100.008685876885788458505158725559596450630
2Casey BaileyX100.007974896974818760505758665544446450610
3Brendan Leipsic (A)XX99.006741917159657063547459552550506450600
4Carter VerhaegheX100.007368836468656664806461645844446550600
5Mark McNeillXX100.007878776678747858734962655944446350600
6Sam CarrickX100.006768666568808562786258605545456350600
7Filip Chytil (R)X100.007065806565636363796260625745456350590
8Alexander Volkov (R)XX100.007471826471666861505661635844446250590
9Rocco GrimaldiXX100.006355827155768061765563596047486350590
10Andreas JohnssonX100.006765736365545169506569626644446650590
11Dmytro Timashov (R)X100.007267856767758059505657625444446250590
12Dominic Toninato (R)X100.006741897663517261605555612548486050580
13Andreas Borgman (R)X100.009046837774637760255348602548486150620
14Andy WelinskiX100.007572817372737760255253645044446250620
15Scott Harrington (A)X100.007644917075625256254948732554545950610
16Petter GranbergX100.007876827076748247253740633848485450600
17Jake Walman (R)X100.007874877174656950254541633944445550590
Scratches
1Frederik GauthierX85.968381897081768253664951674847476050590
2Calvin Thurkauf (R)X100.007875856575768351644751634844445850570
3Reid Gardiner (R)X100.007669936569505150504947624544445450530
4Nikita Korostelev (R)X100.007771926571505149504548624644445450530
5Rinat ValievX100.008076886476606352254345644345455650580
TEAM AVERAGE99.32756684687167715851535463474646615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Hutchinson100.00675873817069687471703056566850670
2Antoine Bibeau100.00636784826369596866653044446550640
Scratches
1Christopher Gibson100.00575569725762616564633045456050590
2C.J. Motte100.00595366636266576466643044446150590
TEAM AVERAGE100.0062587375636761686766304747645062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe37797575535663CAN371900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Andreas BorgmanMarlies (TOR)D20110110460641720005.00%1641820.921011774000172010.00%000000.5300000012
2Filip ChytilMarlies (TOR)C2056117401540230021.74%126013.0300000000000163.54%27700000.8400000210
3Alexander VolkovMarlies (TOR)LW/RW20471182001610250016.00%222011.0400000000002033.33%600001.0000000010
4Andreas JohnssonMarlies (TOR)LW206511780830370016.22%026013.04101110000380035.00%2000000.8400000101
5Mark McNeillMarlies (TOR)C/RW20641061203219270022.22%333316.66112572000001052.63%1900000.6000000301
6Jake WalmanMarlies (TOR)D20191014200451012008.33%1030115.09000318000014000.00%000000.6600000112
7Sam CarrickMarlies (TOR)C2036983001237290010.34%223111.5701125000000061.58%17700100.7800000012
8Andy WelinskiMarlies (TOR)D2045922954227310012.90%1147523.761122275101185110.00%000000.3800100210
9Brendan LeipsicMarlies (TOR)C/LW20268720133528007.14%240820.440115810000551057.35%6800000.3925000000
10Carter VerhaegheMarlies (TOR)C202680140173536005.56%234517.261127690110440162.54%28300000.4601000000
11Dmytro TimashovMarlies (TOR)LW20437-1100182541009.76%429614.85011772000021247.06%1700000.4700000011
12Andreas MartinsenMarlies (TOR)C/LW/RW93362202020130023.08%621223.590114320000510159.75%15900000.5703000210
13Casey BaileyMarlies (TOR)RW202350235303237005.41%533516.77011138500001210060.00%2500000.3016000011
14Zach RedmondMaple LeafsD141346120311912008.33%1532723.37101951011064100.00%000000.2400000000
15Rinat ValievMarlies (TOR)D141341119520730033.33%1621715.5100003000032100.00%000000.3700001001
16Frederik GauthierMarlies (TOR)C1101110010510000.00%0817.42000213000090043.86%5700000.2500000000
17Scott HarringtonMarlies (TOR)D3000-220320000.00%24916.6400005000011000.00%000000.0000000000
Team Total or Average291458012576253153963703840011.72%97477616.4168149766412326058759.84%110800100.5231510111911
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonMarlies (TOR)2011540.9131.76122923364120010.66718200032
Team Total or Average2011540.9131.76122923364120010.66718200032


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alexander VolkovMarlies (TOR)LW/RW211997-08-02Yes191 Lbs6 ft1NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Andreas BorgmanMarlies (TOR)D231995-06-18Yes191 Lbs6 ft0NoNoNo3ELCPro & Farm1,000,000$1,000,000$1,000,000$Link
Andreas JohnssonMarlies (TOR)LW231994-11-20No190 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$500,000$Link
Andreas MartinsenMarlies (TOR)C/LW/RW281990-06-12No220 Lbs6 ft3NoNoNo4UFAPro & Farm650,000$650,000$650,000$650,000$Link
Andy WelinskiMarlies (TOR)D251993-04-27No205 Lbs6 ft1NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Antoine BibeauMarlies (TOR)D241994-04-30No210 Lbs6 ft3NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Brendan LeipsicMarlies (TOR)C/LW241994-05-18No180 Lbs5 ft10NoNoNo2ELCPro & Farm650,000$650,000$Link
C.J. MotteMarlies (TOR)G261991-12-10No176 Lbs6 ft0NoNoNo4ELCPro & Farm650,000$650,000$650,000$650,000$Link
Calvin ThurkaufMarlies (TOR)C211997-06-27Yes204 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Carter VerhaegheMarlies (TOR)C231995-08-14No181 Lbs6 ft1NoNoNo1ELCPro & Farm700,000$Link
Casey BaileyMarlies (TOR)RW271991-10-27No195 Lbs6 ft3NoNoNo3RFAPro & Farm925,000$925,000$925,000$Link
Christopher GibsonMarlies (TOR)D251992-12-27No188 Lbs6 ft1NoNoNo2ELCPro & Farm650,000$650,000$Link
Dmytro TimashovMarlies (TOR)LW221996-09-30Yes195 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$500,000$Link
Dominic ToninatoMarlies (TOR)C241994-03-09Yes165 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Filip ChytilMarlies (TOR)C191999-09-05Yes178 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Frederik Gauthier (Out of Payroll)Marlies (TOR)C231995-04-26No238 Lbs6 ft5NoNoNo1ELCPro & Farm900,000$Link
Jake WalmanMarlies (TOR)D221996-02-20Yes170 Lbs6 ft1NoNoNo3ELCPro & Farm700,000$700,000$700,000$Link
Mark McNeillMarlies (TOR)C/RW251993-02-21No214 Lbs6 ft2NoNoNo1ELCPro & Farm650,000$Link
Michael HutchinsonMarlies (TOR)D281990-03-01No202 Lbs6 ft3NoNoNo4UFAPro & Farm1,300,000$1,300,000$1,300,000$1,300,000$Link
Nikita KorostelevMarlies (TOR)RW211997-02-08Yes195 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Petter GranbergMarlies (TOR)D261992-08-26No200 Lbs6 ft3NoNoNo2ELCPro & Farm650,000$650,000$Link
Reid GardinerMarlies (TOR)RW221996-01-18Yes193 Lbs5 ft11NoNoNo3ELCPro & Farm550,000$550,000$550,000$Link
Rinat ValievMarlies (TOR)D231995-05-11No215 Lbs6 ft3NoNoNo1ELCPro & Farm750,000$Link
Rocco GrimaldiMarlies (TOR)C/RW251993-02-07No180 Lbs5 ft6NoNoNo2ELCPro & Farm675,000$675,000$Link
Sam CarrickMarlies (TOR)C261992-02-03No188 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$Link
Scott HarringtonMarlies (TOR)D251993-03-09No219 Lbs6 ft2NoNoNo2ELCPro & Farm675,000$675,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.88196 Lbs6 ft12.46702,885$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LeipsicFilip ChytilMark McNeill40122
2Dmytro TimashovCarter Verhaeghe30122
3Andreas JohnssonSam CarrickAlexander Volkov20122
4Casey Bailey10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Andy Welinski40122
2Andreas Borgman30122
3Jake Walman20122
4Andy Welinski10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brendan LeipsicCasey Bailey60122
2Dmytro TimashovCarter VerhaegheMark McNeill40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Andy Welinski60122
2Andreas Borgman40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Casey Bailey60122
2Brendan LeipsicCarter Verhaeghe40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Andy Welinski60122
2Andreas Borgman40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Andy Welinski60122
2Casey Bailey40122Andreas Borgman40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Casey Bailey60122
2Brendan LeipsicCarter Verhaeghe40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Andy Welinski60122
2Andreas Borgman40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brendan LeipsicCasey BaileyAndy Welinski
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brendan LeipsicCasey BaileyAndy Welinski
Extra Forwards
Normal PowerPlayPenalty Kill
, Sam Carrick, Andreas Johnsson, Sam CarrickAndreas Johnsson
Extra Defensemen
Normal PowerPlayPenalty Kill
Jake Walman, , Andreas BorgmanJake Walman, Andreas Borgman
Penalty Shots
, Casey Bailey, Brendan Leipsic, Carter Verhaeghe, Mark McNeill
Goalie
#1 : Michael Hutchinson, #2 : Antoine Bibeau


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans3300000015782200000010461100000053261.00015284300121816472122135142277823447612216.67%22195.45%032955559.28%32556857.22%15128752.61%506356481146244123
2Bears1010000012-11010000012-10000000000000.00011200121816429122135142272141032400.00%50100.00%032955559.28%32556857.22%15128752.61%506356481146244123
3Checkers2010000126-4000000000002010000126-410.2502350012181644812213514227601229446116.67%12283.33%032955559.28%32556857.22%15128752.61%506356481146244123
4Comets20001001330100010002111000000112-130.7503580012181645012213514227381318401300.00%9188.89%132955559.28%32556857.22%15128752.61%506356481146244123
5Gulls1010000023-1000000000001010000023-100.000246001218164131221351422714218154125.00%9277.78%032955559.28%32556857.22%15128752.61%506356481146244123
6Heat531000101367220000007343110001063380.8001322350212181647712213514227852270862528.00%26196.15%032955559.28%32556857.22%15128752.61%506356481146244123
7IceCaps1000000123-11000000123-10000000000010.50023500121816414122135142272062231500.00%10190.00%032955559.28%32556857.22%15128752.61%506356481146244123
8Icehogs1010000013-21010000013-20000000000000.00012310121816424122135142272571220400.00%5180.00%032955559.28%32556857.22%15128752.61%506356481146244123
9Pirates11000000321110000003210000000000021.00036900121816424122135142271691011600.00%4175.00%032955559.28%32556857.22%15128752.61%506356481146244123
10Reign11000000431000000000001100000043121.00048120012181641612213514227234825200.00%4175.00%032955559.28%32556857.22%15128752.61%506356481146244123
11Senators1000000101-1000000000001000000101-110.50000000121816427122135142271741223800.00%60100.00%032955559.28%32556857.22%15128752.61%506356481146244123
Since Last GM Reset20850102449418105201011292091033000132021-1260.6504985134121218164408122135142274131152634259366.45%1171289.74%132955559.28%32556857.22%15128752.61%506356481146244123
13Stars10000010321100000103210000000000021.00033600121816414122135142271691022400.00%5180.00%032955559.28%32556857.22%15128752.61%506356481146244123
Total20850102449418105201011292091033000132021-1260.6504985134121218164408122135142274131152634259366.45%1171289.74%132955559.28%32556857.22%15128752.61%506356481146244123
Vs Conference167301023423210951010112818107220001214140230.7194272114121218164323122135142273381012153307556.67%93990.32%132955559.28%32556857.22%15128752.61%506356481146244123
Vs Division2610101245-12400100145-102100011000184.500459101218164381221351422741162242800.00%10280.00%032955559.28%32556857.22%15128752.61%506356481146244123

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2026W2498513440841311526342512
All Games
GPWLOTWOTL SOWSOLGFGA
208510244941
Home Games
GPWLOTWOTL SOWSOLGFGA
105210112920
Visitor Games
GPWLOTWOTL SOWSOLGFGA
103300132021
Last 10 Games
WLOTWOTL SOWSOL
440002
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
9366.45%1171289.74%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
122135142271218164
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
32955559.28%32556857.22%15128752.61%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
506356481146244123


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-022Marlies2Heat1WXXBoxScore
3 - 2018-10-0421Marlies2Gulls3LBoxScore
4 - 2018-10-0531Americans2Marlies5WBoxScore
7 - 2018-10-0850Stars2Marlies3WXXBoxScore
9 - 2018-10-1062Marlies3Heat0WBoxScore
12 - 2018-10-1384Comets1Marlies2WXBoxScore
15 - 2018-10-16106Heat0Marlies3WBoxScore
16 - 2018-10-17117Marlies1Comets2LXXBoxScore
17 - 2018-10-18123Marlies5Americans3WBoxScore
20 - 2018-10-21147IceCaps3Marlies2LXXBoxScore
22 - 2018-10-23159Marlies0Checkers3LBoxScore
25 - 2018-10-26176Pirates2Marlies3WBoxScore
27 - 2018-10-28198Icehogs3Marlies1LBoxScore
30 - 2018-10-31213Marlies1Heat2LBoxScore
32 - 2018-11-02226Heat3Marlies4WBoxScore
34 - 2018-11-04246Marlies2Checkers3LXXBoxScore
36 - 2018-11-06257Bears2Marlies1LBoxScore
39 - 2018-11-09278Marlies0Senators1LXXBoxScore
41 - 2018-11-11290Americans2Marlies5WBoxScore
43 - 2018-11-13310Marlies4Reign3WBoxScore
45 - 2018-11-15318Icehogs-Marlies-
47 - 2018-11-17338Marlies-Heat-
49 - 2018-11-19350Comets-Marlies-
52 - 2018-11-22375Crunch-Marlies-
55 - 2018-11-25392Marlies-Stars-
57 - 2018-11-27405Marlies-Wolves-
58 - 2018-11-28416IceCaps-Marlies-
61 - 2018-12-01438Condors-Marlies-
63 - 2018-12-03455Marlies-Admirals-
65 - 2018-12-05466Marlies-Rampage-
67 - 2018-12-07478Phantoms-Marlies-
69 - 2018-12-09495Marlies-Wolves-
71 - 2018-12-11508Comets-Marlies-
73 - 2018-12-13523Marlies-Wolves-
75 - 2018-12-15532Marlies-Icehogs-
77 - 2018-12-17547Heat-Marlies-
79 - 2018-12-19567Marlies-Gulls-
81 - 2018-12-21578Monsters-Marlies-
84 - 2018-12-24597Checkers-Marlies-
87 - 2018-12-27613Marlies-Comets-
89 - 2018-12-29631Wolves-Marlies-
92 - 2019-01-01654Penguins-Marlies-
94 - 2019-01-03671Marlies-Griffins-
96 - 2019-01-05685IceCaps-Marlies-
97 - 2019-01-06692Marlies-Griffins-
100 - 2019-01-09712Marlies-Wild-
101 - 2019-01-10725Devils-Marlies-
104 - 2019-01-13747Griffins-Marlies-
105 - 2019-01-14752Marlies-Barracuda-
108 - 2019-01-17778Pirates-Marlies-
110 - 2019-01-19789Marlies-Wolf Pack-
112 - 2019-01-21808Marlies-Americans-
114 - 2019-01-23817Americans-Marlies-
118 - 2019-01-27843Condors-Marlies-
121 - 2019-01-30864Marlies-Wild-
122 - 2019-01-31876Wolves-Marlies-
125 - 2019-02-03895Marlies-IceCaps-
126 - 2019-02-04906Admirals-Marlies-
129 - 2019-02-07932Stars-Marlies-
130 - 2019-02-08940Marlies-Moose-
133 - 2019-02-11962Sound Tigers-Marlies-
135 - 2019-02-13972Marlies-Americans-
137 - 2019-02-15982Marlies-Pirates-
139 - 2019-02-17999Wild-Marlies-
143 - 2019-02-211025Bruins-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231037Marlies-Wolves-
146 - 2019-02-241043Marlies-IceCaps-
148 - 2019-02-261060Wild-Marlies-
150 - 2019-02-281069Marlies-Condors-
152 - 2019-03-021085Marlies-Admirals-
154 - 2019-03-041095Stars-Marlies-
156 - 2019-03-061109Marlies-Falcons-
159 - 2019-03-091126Rampage-Marlies-
164 - 2019-03-141153Rampage-Marlies-
166 - 2019-03-161167Marlies-Falcons-
167 - 2019-03-171171Marlies-Condors-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,737,500$ 1,800,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
704,002$ 0$ 465,759$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 15,607$ 1,950,875$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201820850102449418105201011292091033000132021-1264985134121218164408122135142274131152634259366.45%1171289.74%132955559.28%32556857.22%15128752.61%506356481146244123
Total Regular Season20850102449418105201011292091033000132021-1264985134121218164408122135142274131152634259366.45%1171289.74%132955559.28%32556857.22%15128752.61%506356481146244123