Marlies

GP: 74 | W: 41 | L: 25 | OTL: 8 | P: 90
GF: 180 | GA: 174 | PP%: 8.96% | PK%: 86.92%
GM : Stu Lap | Morale : 50 | Team Overall : 60
Next Games #1167 vs Falcons
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Andreas MartinsenXXX99.008685876885788458505158725559596450630
2Ivan BarbashevXX98.007843978267629258496064612555556750620
3Casey BaileyX100.007974896974818760505758665544446450610
4Frederik GauthierX100.008381897081768253664951674847476050590
5Alexander Volkov (R)XX99.007471826471666861505661635844446250590
6Andreas JohnssonX99.006765736365545169506569626644446650590
7Dominic Toninato (R)X100.006741897663517261605555612548486050580
8Calvin Thurkauf (R)X100.007875856575768351644751634844445850570
9Nikita Korostelev (R)X100.007771926571505149504548624644445450530
10Vince DunnX99.006341918168729075256049572553536250630
11Travis DermottX99.007844927370697864256648672547476350630
12Scott Harrington (C)X100.007644917075625256254948732554545950610
13Petter GranbergX100.007876827076748247253740633848485450600
14Jake Walman (R)X100.007874877174656950254541633944445550590
15Rinat ValievX100.008076886476606352254345644345455650580
Scratches
1Jesse Puljujarvi (A)X100.007544928177658765256171602555557050640
2Nikita SoshnikovXX100.008144917866586556255758756355556450610
3Carter VerhaegheX97.817368836468656664806461645844446550600
4Filip Chytil (R)X99.887065806565636363796260625745456350590
5Gage Quinney (R)XX100.007472806272606349614646604444445350530
6Reid Gardiner (R)X100.007669936569505150504947624544445450530
TEAM AVERAGE99.56766387707265715846545464434848615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Hutchinson100.00675873817069687471703056566850670
2Ville Husso99.00655873816871627071693044446650650
Scratches
1Antoine Bibeau100.00636784826369596866653044446550640
2Anders Lindback100.00607189895963526357563059606050620
3Christopher Gibson100.00575569725762616564633045456050590
TEAM AVERAGE99.8062627881636760686665305050645063
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe37797575535663CAN371900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Carter VerhaegheMarlies (TOR)C63142337940082147119172811.76%9107717.10358192170111792463.97%101300000.6902000614
2Ivan BarbashevMarlies (TOR)C/LW7317193631604911199216917.17%3107614.752241281000072043.53%8500000.6727000774
3Scott HarringtonMarlies (TOR)D5262531-3520108695281811.54%67114121.95426361710000163000.00%000000.5400000121
4Andreas JohnssonMarlies (TOR)LW74151227314046669653415.63%779310.72325141010111672147.27%5500100.6801000411
5Alexander VolkovMarlies (TOR)LW/RW5012112311335353664101118.75%1068113.632246590000485040.48%4200000.6800100221
6Jesse PuljujarviMarlies (TOR)RW249716-760243465113513.85%851121.3342616870001563032.14%8400000.6302000322
7Petter GranbergMarlies (TOR)D4941216-9840135303561611.43%58105721.57011221520000146010.00%000000.3000000213
8Casey BaileyMarlies (TOR)RW505813-53956287758166.67%1088117.630222315800012152063.49%6300000.2918000132
9Filip ChytilMarlies (TOR)C3067135402053420414.29%140113.39000000001300163.28%33500000.6500000220
10Jake WalmanMarlies (TOR)D361101116420642616226.25%1855315.37000433000038000.00%000000.4000000112
11Rinat ValievMarlies (TOR)D52291196159536150313.33%4890817.470112590001130100.00%000000.2400001023
12Vince DunnMarlies (TOR)D2111011-216021282411154.17%1544821.341672291000017000.00%000000.4900000100
13Andreas MartinsenMarlies (TOR)C/LW/RW234610-3804960304713.33%1050321.91033108900001110253.40%48500000.4015000210
14Travis DermottMarlies (TOR)D141890120201615746.67%929721.22134105700007000.00%000000.6100000011
15Dominic ToninatoMarlies (TOR)C23235-1206181661112.50%21988.64022170000121050.00%9800000.5000000000
16Nikita KorostelevMarlies (TOR)RW1623568051162633.33%319512.24011030000311028.57%700000.5100000000
17Frederik GauthierMarlies (TOR)C3422441603246265147.69%739211.530002260001680060.82%31900000.2000000010
18Zach RedmondMaple LeafsD141346120311912008.33%1532723.37101951011064100.00%000000.2400000000
19Calvin ThurkaufMarlies (TOR)C36022-4120251913470.00%42847.910000280000340052.94%11900000.1400000000
20Reid GardinerMarlies (TOR)RW2011-100213010.00%02814.10000000000000100.00%100000.7100000000
Team Total or Average736104181285374771591191382312730112.64%3041176015.9821345520814810337133320958.20%270600100.48425101322724
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HutchinsonMarlies (TOR)49281450.9082.012862469610420020.714214713472
2Antoine BibeauMarlies (TOR)158420.9012.5587021373740000.600101451201
3Ville HussoMarlies (TOR)165710.8962.5283461353380000.62581358200
Team Total or Average80412580.9042.21456812816817540020.6673974122873


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Alexander VolkovMarlies (TOR)LW/RW211997-08-02Yes191 Lbs6 ft1NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Anders LindbackMarlies (TOR)G301988-05-03No215 Lbs6 ft6NoNoNo1UFAPro & Farm500,000$0$0$NoLink
Andreas JohnssonMarlies (TOR)LW241994-11-20No190 Lbs5 ft10NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Andreas MartinsenMarlies (TOR)C/LW/RW281990-06-12No220 Lbs6 ft3NoNoNo4UFAPro & Farm650,000$0$0$NoLink
Antoine BibeauMarlies (TOR)G241994-04-30No210 Lbs6 ft3NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Calvin ThurkaufMarlies (TOR)C211997-06-27Yes204 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Carter VerhaegheMarlies (TOR)C231995-08-14No181 Lbs6 ft1NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Casey BaileyMarlies (TOR)RW271991-10-27No195 Lbs6 ft3NoNoNo3RFAPro & Farm925,000$0$0$NoLink
Christopher GibsonMarlies (TOR)G261992-12-27No188 Lbs6 ft1NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Dominic ToninatoMarlies (TOR)C251994-03-09Yes165 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Filip ChytilMarlies (TOR)C191999-09-05Yes178 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Frederik GauthierMarlies (TOR)C231995-04-26No238 Lbs6 ft5NoNoNo1ELCPro & Farm900,000$0$0$NoLink
Gage QuinneyMarlies (TOR)C/LW231995-07-29Yes201 Lbs5 ft11NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Ivan BarbashevMarlies (TOR)C/LW231995-12-14No180 Lbs6 ft0NoNoNo1ELCPro & Farm850,000$0$0$NoLink
Jake WalmanMarlies (TOR)D231996-02-20Yes170 Lbs6 ft1NoNoNo3ELCPro & Farm700,000$0$0$NoLink
Jesse PuljujarviMarlies (TOR)RW201998-05-07No203 Lbs6 ft4NoNoNo2ELCPro & Farm950,000$0$0$NoLink
Michael HutchinsonMarlies (TOR)G291990-03-01No202 Lbs6 ft3NoNoNo4UFAPro & Farm1,300,000$0$0$NoLink
Nikita KorostelevMarlies (TOR)RW221997-02-08Yes195 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Nikita SoshnikovMarlies (TOR)LW/RW251993-10-14No190 Lbs5 ft11NoNoNo1ELCPro & Farm737,000$0$0$NoLink
Petter GranbergMarlies (TOR)D261992-08-26No200 Lbs6 ft3NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Reid GardinerMarlies (TOR)RW231996-01-18Yes193 Lbs5 ft11NoNoNo3ELCPro & Farm550,000$0$0$NoLink
Rinat ValievMarlies (TOR)D231995-05-11No215 Lbs6 ft3NoNoNo1ELCPro & Farm750,000$0$0$NoLink
Scott HarringtonMarlies (TOR)D261993-03-09No219 Lbs6 ft2NoNoNo2ELCPro & Farm675,000$0$0$NoLink
Travis DermottMarlies (TOR)D221996-12-21No215 Lbs6 ft0NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Ville HussoMarlies (TOR)G241995-02-05No205 Lbs6 ft3NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Vince DunnMarlies (TOR)D221996-10-28No187 Lbs6 ft0NoNoNo2ELCPro & Farm800,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.92198 Lbs6 ft22.31716,808$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ivan Barbashev40122
2Andreas JohnssonAndreas MartinsenCasey Bailey30122
3Alexander VolkovFrederik GauthierNikita Korostelev20122
4Alexander VolkovDominic ToninatoCalvin Thurkauf10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnTravis Dermott40122
2Scott HarringtonPetter Granberg30122
3Jake WalmanRinat Valiev30122
4Vince DunnTravis Dermott0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ivan Barbashev60122
2Andreas JohnssonAndreas MartinsenAlexander Volkov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnTravis Dermott60122
2Scott HarringtonPetter Granberg40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Andreas MartinsenCasey Bailey60122
2Frederik GauthierNikita Korostelev40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Scott HarringtonPetter Granberg60122
2Rinat Valiev40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Andreas Martinsen60122Vince DunnTravis Dermott60122
2Frederik Gauthier40122Scott HarringtonPetter Granberg40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Ivan Barbashev60122
2Andreas Johnsson40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Vince DunnTravis Dermott60122
2Scott HarringtonPetter Granberg40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Ivan BarbashevAndreas MartinsenVince DunnTravis Dermott
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Ivan BarbashevAndreas MartinsenVince DunnTravis Dermott
Extra Forwards
Normal PowerPlayPenalty Kill
Calvin Thurkauf, Frederik Gauthier, Alexander VolkovCalvin Thurkauf, Frederik GauthierAlexander Volkov
Extra Defensemen
Normal PowerPlayPenalty Kill
Jake Walman, Rinat Valiev, Scott HarringtonJake WalmanRinat Valiev, Scott Harrington
Penalty Shots
, Andreas Martinsen, Ivan Barbashev, Casey Bailey,
Goalie
#1 : Ville Husso, #2 : Michael Hutchinson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals3120000046-21010000012-12110000034-120.3334711006047651332499478489595114225116212.50%11281.82%01133200656.48%1193218354.65%591103856.94%183413021798523873440
2Americans65100000271611321000001275330000001596100.833275077006047651314049947848959171408412922418.18%40490.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
3Barracuda11000000202000000000001100000020221.0002460160476513174994784895921121218400.00%60100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
4Bears1010000012-11010000012-10000000000000.000112006047651329499478489592141032400.00%50100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
5Bruins10001000211100010002110000000000021.000246006047651312499478489591128305120.00%4175.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
6Checkers30200001410-61010000024-22010000126-410.1674610006047651367499478489598622356211218.18%15286.67%01133200656.48%1193218354.65%591103856.94%183413021798523873440
7Comets5300100114104320010009542100000155090.900142539006047651311949947848959882151982414.17%21290.48%11133200656.48%1193218354.65%591103856.94%183413021798523873440
8Condors32100000743220000006241010000012-140.66771421006047651338499478489596514385712433.33%19384.21%01133200656.48%1193218354.65%591103856.94%183413021798523873440
9Crunch1010000034-11010000034-10000000000000.000347006047651321499478489593271024500.00%4175.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
10Devils1000000134-11000000134-10000000000010.5003470060476513294994784895923816224125.00%8187.50%01133200656.48%1193218354.65%591103856.94%183413021798523873440
11Falcons1010000014-3000000000001010000014-300.000123006047651313499478489591568166116.67%4250.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
12Griffins31100001910-11010000013-22100000187130.5009152400604765136149947848959802542711100.00%17288.24%01133200656.48%1193218354.65%591103856.94%183413021798523873440
13Gulls2020000047-3000000000002020000047-300.00047110060476513274994784895934828427114.29%14378.57%01133200656.48%1193218354.65%591103856.94%183413021798523873440
14Heat74101010178932001000105542100010734120.85717284503604765131324994784895913733921263925.13%36391.67%01133200656.48%1193218354.65%591103856.94%183413021798523873440
15IceCaps51300001614-83110000158-32020000016-530.300611170160476513994994784895913439621074224.76%27485.19%01133200656.48%1193218354.65%591103856.94%183413021798523873440
16Icehogs3020001046-22010001023-11010000023-120.33345911604765138549947848959601636611800.00%17382.35%11133200656.48%1193218354.65%591103856.94%183413021798523873440
17Monsters1010000034-11010000034-10000000000000.0003470060476513184994784895929101018600.00%40100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
18Moose1010000024-2000000000001010000024-200.000246106047651319499478489592111621400.00%3166.67%01133200656.48%1193218354.65%591103856.94%183413021798523873440
19Penguins11000000541110000005410000000000021.00057120060476513274994784895941104184125.00%20100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
20Phantoms11000000523110000005230000000000021.00059140060476513314994784895920136266116.67%30100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
21Pirates330000001284220000006421100000064261.000122335006047651377499478489596619184117211.76%8275.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
22Rampage32100000651211000003301100000032140.6676101600604765136249947848959621928811300.00%14285.71%01133200656.48%1193218354.65%591103856.94%183413021798523873440
23Reign11000000431000000000001100000043121.000481200604765131649947848959234825200.00%4175.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
24Senators1000000101-1000000000001000000101-110.500000006047651327499478489591741223800.00%60100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
25Sound Tigers11000000101110000001010000000000021.000123016047651312499478489591318116116.67%40100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
26Stars41000111121113000011178-11100000053260.7501221330060476513764994784895911335566918422.22%26580.77%01133200656.48%1193218354.65%591103856.94%183413021798523873440
Total7433250414718017463817110313396897361614010148485-1900.608180315495276047651314874994784895917284948061513357328.96%3674886.92%21133200656.48%1193218354.65%591103856.94%183413021798523873440
28Wild40300010517-1220100010512-72020000005-520.250581300604765135349947848959993128841815.56%14471.43%01133200656.48%1193218354.65%591103856.94%183413021798523873440
29Wolf Pack11000000321000000000001100000032121.00035800604765133149947848959317627400.00%20100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
30Wolves31101000431110000002112010100022040.667481200604765136649947848959792930571317.69%150100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
31Wolves330000001046110000002112200000083561.0001019290060476513514994784895985303266800.00%140100.00%01133200656.48%1193218354.65%591103856.94%183413021798523873440
_Since Last GM Reset7433250414718017463817110313396897361614010148485-1900.608180315495276047651314874994784895917284948061513357328.96%3674886.92%21133200656.48%1193218354.65%591103856.94%183413021798523873440
_Vs Conference5827180314514113293014802132736852813100101368644740.638141250391156047651311584994784895913763876541160282258.87%2943887.07%21133200656.48%1193218354.65%591103856.94%183413021798523873440
_Vs Division21135020123752-151172020012029-91063000111723-6340.810376310021604765133934994784895948515520642410088.00%1001783.00%11133200656.48%1193218354.65%591103856.94%183413021798523873440

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7490W118031549514871728494806151327
All Games
GPWLOTWOTL SOWSOLGFGA
7433254147180174
Home Games
GPWLOTWOTL SOWSOLGFGA
38171131339689
Visitor Games
GPWLOTWOTL SOWSOLGFGA
36161410148485
Last 10 Games
WLOTWOTL SOWSOL
251011
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
357328.96%3674886.92%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
4994784895960476513
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1133200656.48%1193218354.65%591103856.94%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
183413021798523873440


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-022Marlies2Heat1WXXBoxScore
3 - 2018-10-0421Marlies2Gulls3LBoxScore
4 - 2018-10-0531Americans2Marlies5WBoxScore
7 - 2018-10-0850Stars2Marlies3WXXBoxScore
9 - 2018-10-1062Marlies3Heat0WBoxScore
12 - 2018-10-1384Comets1Marlies2WXBoxScore
15 - 2018-10-16106Heat0Marlies3WBoxScore
16 - 2018-10-17117Marlies1Comets2LXXBoxScore
17 - 2018-10-18123Marlies5Americans3WBoxScore
20 - 2018-10-21147IceCaps3Marlies2LXXBoxScore
22 - 2018-10-23159Marlies0Checkers3LBoxScore
25 - 2018-10-26176Pirates2Marlies3WBoxScore
27 - 2018-10-28198Icehogs3Marlies1LBoxScore
30 - 2018-10-31213Marlies1Heat2LBoxScore
32 - 2018-11-02226Heat3Marlies4WBoxScore
34 - 2018-11-04246Marlies2Checkers3LXXBoxScore
36 - 2018-11-06257Bears2Marlies1LBoxScore
39 - 2018-11-09278Marlies0Senators1LXXBoxScore
41 - 2018-11-11290Americans2Marlies5WBoxScore
43 - 2018-11-13310Marlies4Reign3WBoxScore
45 - 2018-11-15318Icehogs0Marlies1WXXBoxScore
47 - 2018-11-17338Marlies1Heat0WBoxScore
49 - 2018-11-19350Comets2Marlies3WBoxScore
52 - 2018-11-22375Crunch4Marlies3LBoxScore
55 - 2018-11-25392Marlies5Stars3WBoxScore
57 - 2018-11-27405Marlies4Wolves2WBoxScore
58 - 2018-11-28416IceCaps0Marlies1WBoxScore
61 - 2018-12-01438Condors1Marlies2WBoxScore
63 - 2018-12-03455Marlies0Admirals3LBoxScore
65 - 2018-12-05466Marlies3Rampage2WBoxScore
67 - 2018-12-07478Phantoms2Marlies5WBoxScore
69 - 2018-12-09495Marlies2Wolves1WXBoxScore
71 - 2018-12-11508Comets2Marlies4WBoxScore
73 - 2018-12-13523Marlies4Wolves1WBoxScore
75 - 2018-12-15532Marlies2Icehogs3LBoxScore
77 - 2018-12-17547Heat2Marlies3WXBoxScore
79 - 2018-12-19567Marlies2Gulls4LBoxScore
81 - 2018-12-21578Monsters4Marlies3LBoxScore
84 - 2018-12-24597Checkers4Marlies2LBoxScore
87 - 2018-12-27613Marlies4Comets3WBoxScore
89 - 2018-12-29631Wolves1Marlies2WBoxScore
92 - 2019-01-01654Penguins4Marlies5WBoxScore
94 - 2019-01-03671Marlies3Griffins4LXXBoxScore
96 - 2019-01-05685IceCaps5Marlies2LBoxScore
97 - 2019-01-06692Marlies5Griffins3WBoxScore
100 - 2019-01-09712Marlies0Wild1LBoxScore
101 - 2019-01-10725Devils4Marlies3LXXBoxScore
104 - 2019-01-13747Griffins3Marlies1LBoxScore
105 - 2019-01-14752Marlies2Barracuda0WBoxScore
108 - 2019-01-17778Pirates2Marlies3WBoxScore
110 - 2019-01-19789Marlies3Wolf Pack2WBoxScore
112 - 2019-01-21808Marlies6Americans3WBoxScore
114 - 2019-01-23817Americans3Marlies2LBoxScore
118 - 2019-01-27843Condors1Marlies4WBoxScore
121 - 2019-01-30864Marlies0Wild4LBoxScore
122 - 2019-01-31876Wolves1Marlies2WBoxScore
125 - 2019-02-03895Marlies1IceCaps3LBoxScore
126 - 2019-02-04906Admirals2Marlies1LBoxScore
129 - 2019-02-07932Stars1Marlies0LXBoxScore
130 - 2019-02-08940Marlies2Moose4LBoxScore
133 - 2019-02-11962Sound Tigers0Marlies1WBoxScore
135 - 2019-02-13972Marlies4Americans3WBoxScore
137 - 2019-02-15982Marlies6Pirates4WBoxScore
139 - 2019-02-17999Wild9Marlies1LBoxScore
143 - 2019-02-211025Bruins1Marlies2WXBoxScore
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231037Marlies0Wolves1LBoxScore
146 - 2019-02-241043Marlies0IceCaps3LBoxScore
148 - 2019-02-261060Wild3Marlies4WXXBoxScore
150 - 2019-02-281069Marlies1Condors2LBoxScore
152 - 2019-03-021085Marlies3Admirals1WBoxScore
154 - 2019-03-041095Stars5Marlies4LXXBoxScore
156 - 2019-03-061109Marlies1Falcons4LBoxScore
159 - 2019-03-091126Rampage2Marlies1LBoxScore
164 - 2019-03-141153Rampage1Marlies2WBoxScore
166 - 2019-03-161167Marlies-Falcons-
167 - 2019-03-171171Marlies-Condors-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
0 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
2,495,706$ 1,863,700$ 1,918,700$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,604,450$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 5 16,353$ 81,765$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20187433250414718017463817110313396897361614010148485-190180315495276047651314874994784895917284948061513357328.96%3674886.92%21133200656.48%1193218354.65%591103856.94%183413021798523873440
Total Regular Season7433250414718017463817110313396897361614010148485-190180315495276047651314874994784895917284948061513357328.96%3674886.92%21133200656.48%1193218354.65%591103856.94%183413021798523873440