Bears

GP: 48 | W: 18 | L: 26 | OTL: 4 | P: 40
GF: 89 | GA: 126 | PP%: 12.68% | PK%: 82.79%
GM : Jeremy Hiemstra | Morale : 50 | Team Overall : 58
Next Games #735 vs IceCaps
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nic PetanXXX99.006140877759528264475064652556566450600
2Yannick WeberX100.007543897772597755254648607568695850620
3Nick SeelerX100.007374746676658060255447742546466150620
4Ryan JohnstonX100.007063867063606350255342594044445450560
5Colby Williams (R)X100.006667626667727948254041563944445150560
6Connor Hobbs (R)X100.006769636869677151254741573944445350560
7Tyler LewingtonX100.006269476269788746253640543844444950550
Scratches
1Travis BoydXX100.007066786366848965806561625844446550620
2Marko DanoXX95.277643918066485562445459672559596350600
3Nathan WalkerX100.007064836464676961505760615744446250580
4Thomas DiPauliXX100.007167816567666955694758605544445950560
5Jason AkesonX100.007668936568525255505947634544445750550
6Tim McGauley (R)X100.007668946568515250635144624244445450530
TEAM AVERAGE99.56706279686763715643515062434848585058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Vitek Vanecek99.00506480684654505651513044445350530
Scratches
1Marek Langhamer100.00664961727065727571713044446750640
TEAM AVERAGE99.5058577170586061666161304444605059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff54455364496655CAN5411,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Nick SeelerBears (WSH)D4831619-13535977664694.69%35104821.8519105116400001241033.33%300000.3600001042
2Yannick WeberBears (WSH)D4851217-152806366434611.63%40101321.115712371600000126000.00%100000.3400000113
3Nic PetanBears (WSH)C/LW/RW2914317-212027767862617.95%156519.5160623860000301150.00%6800010.6003000511
4Connor HobbsBears (WSH)D4861117-46959344533211.32%38100020.842133715500001181116.67%1200000.3400001242
5Nathan WalkerBears (WSH)LW306915-51405859580010.34%553017.6812314490000191041.38%2900000.5700000212
6Jason AkesonBears (WSH)RW285813-31003745280017.86%342315.130443400000102051.85%2700000.6100000116
7Colby WilliamsBears (WSH)D4821012-9460934135655.71%3689818.7212317960002881041.67%1200000.2700000011
8Ryan JohnstonBears (WSH)D30178-1320362718025.56%3554118.04011125700005200100.00%100000.3000000111
9Tyler LewingtonBears (WSH)D48088-1110010103186100.00%3682717.240001230001920025.00%400000.1900011011
10Travis BoydBears (WSH)C/RW122460402038140014.29%331926.580002430000340058.98%25600000.3802000022
11Thomas DiPauliBears (WSH)C/LW11145-420182317005.88%223321.250225380000140044.12%23800000.4301000010
12Tim McGauleyBears (WSH)C37145-13175316222004.55%545412.290110330000121049.86%35300000.2200010100
13Marko DanoBears (WSH)C/RW10123240142017005.88%319919.950000290001231028.57%2100000.3011000010
14Zach SanfordCapitalsC/LW/RW25112-126092325004.00%02429.6800007000020040.00%2000000.1700000001
15Trevor van RiemsdykCapitalsD31120000560016.67%07525.1011241400004000.00%000000.5300000000
Team Total or Average45549100149-10236725699623484265010.12%242837318.40173047206100100047549249.38%104500010.3617023131922
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marek LanghamerBears (WSH)38142130.8962.39221405888440000.8005380730
2Vitek VanecekBears (WSH)134510.8733.1866020352750000.66731048001
Team Total or Average51182640.8902.5728752512311190000.75084848731


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Colby WilliamsBears (WSH)D231995-01-25Yes191 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$0$0$NoLink
Connor HobbsBears (WSH)D221997-01-04Yes187 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Jason AkesonBears (WSH)RW281990-06-03No190 Lbs5 ft10NoNoNo1UFAPro & Farm550,000$0$0$NoLink
Marek LanghamerBears (WSH)G241994-07-21No193 Lbs6 ft2NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Marko DanoBears (WSH)C/RW241994-11-29No212 Lbs5 ft11NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Nathan WalkerBears (WSH)LW241994-02-06No186 Lbs5 ft8NoNoNo2ELCPro & Farm750,000$0$0$NoLink
Nic PetanBears (WSH)C/LW/RW231995-03-21No179 Lbs5 ft9NoNoNo1ELCPro & Farm850,000$0$0$NoLink
Nick SeelerBears (WSH)D251993-06-02No192 Lbs6 ft0NoNoNo2ELCPro & Farm575,000$0$0$NoLink
Ryan JohnstonBears (WSH)D261992-02-14No176 Lbs5 ft10NoNoNo1ELCPro & Farm600,000$0$0$NoLink
Thomas DiPauliBears (WSH)C/LW241994-04-28No187 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Tim McGauleyBears (WSH)C231995-07-23Yes175 Lbs6 ft0NoNoNo1ELCPro & Farm663,333$0$0$NoLink
Travis BoydBears (WSH)C/RW251993-09-14No191 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Tyler LewingtonBears (WSH)D241994-12-05No189 Lbs6 ft1NoNoNo1ELCPro & Farm500,000$0$0$NoLink
Vitek VanecekBears (WSH)G231996-01-08No180 Lbs6 ft1NoNoNo2ELCPro & Farm850,000$0$0$NoLink
Yannick WeberBears (WSH)D301988-09-22No200 Lbs5 ft11NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1524.53189 Lbs5 ft111.53625,889$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nic Petan40122
230122
320122
4Nic Petan10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber40122
2Connor HobbsColby Williams30122
3Ryan JohnstonTyler Lewington20122
4Nick SeelerYannick Weber10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Nic Petan60122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor HobbsColby Williams40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Nic Petan40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor HobbsColby Williams40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Nick SeelerYannick Weber60122
240122Connor HobbsColby Williams40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Nic Petan40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor HobbsColby Williams40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nic PetanNick SeelerYannick Weber
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nic PetanNick SeelerYannick Weber
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
Ryan Johnston, Tyler Lewington, Connor HobbsRyan JohnstonTyler Lewington, Connor Hobbs
Penalty Shots
, , Nic Petan, ,
Goalie
#1 : , #2 : Vitek Vanecek


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals11000000202110000002020000000000021.00024601293919215287291291171031314300.00%40100.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
2Americans2110000024-2000000000002110000024-220.500246012939192282872912911751201433600.00%70100.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
3Barracuda32100000853110000004222110000043140.6678152300293919244287291291174224364113215.38%180100.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
4Bruins22000000743110000005321100000021141.0007142100293919243287291291173272038600.00%10190.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
5Condors11000000303110000003030000000000021.000369012939192272872912911720213153133.33%40100.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
6Crunch21100000550211000005500000000000020.50057120029391923328729129117471316451119.09%8362.50%0579122047.46%674136549.38%31965149.00%11277821198346578287
7Devils31100100711-42010010038-51100000043130.5007142100293919256287291291178329407915213.33%18477.78%0579122047.46%674136549.38%31965149.00%11277821198346578287
8Falcons1010000001-11010000001-10000000000000.0000000029391921628729129117144413400.00%20100.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
9Griffins1010000016-5000000000001010000016-500.00012300293919214287291291173791020200.00%5260.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
10Gulls41300000714-72110000059-42020000025-320.250712190029391926928729129117902818541516.67%9455.56%0579122047.46%674136549.38%31965149.00%11277821198346578287
11Icehogs1010000001-1000000000001010000001-100.00000000293919213287291291172151828300.00%9188.89%0579122047.46%674136549.38%31965149.00%11277821198346578287
12Marlies11000000211000000000001100000021121.0002460029391922128729129117296822500.00%40100.00%1579122047.46%674136549.38%31965149.00%11277821198346578287
13Monsters21100000550110000004221010000013-220.50058130029391926128729129117341284516318.75%3166.67%0579122047.46%674136549.38%31965149.00%11277821198346578287
14Moose2010000128-62010000128-60000000000010.2502350029391924728729129117601444521000.00%11463.64%0579122047.46%674136549.38%31965149.00%11277821198346578287
15Penguins51300001913-43120000079-22010000124-230.30091827002939192922872912911710226569228725.00%27292.59%0579122047.46%674136549.38%31965149.00%11277821198346578287
16Phantoms311001005501010000023-12100010032130.500591401293919249287291291178619277915213.33%110100.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
17Pirates1010000034-1000000000001010000034-100.000369002939192212872912911724410204125.00%40100.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
18Reign21000010523110000002021000001032141.00058130129391922528729129117541316497228.57%8187.50%0579122047.46%674136549.38%31965149.00%11277821198346578287
19Senators3110100067-1110000002112010100046-240.66761218002939192432872912911777123053800.00%15380.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
20Sound Tigers1010000003-3000000000001010000003-300.00000000293919210287291291172761016200.00%5260.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
21Stars30300000410-61010000012-12020000038-500.00048120029391926528729129117812534621218.33%16475.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
Total4816260121289126-37231011001015160-925615011113866-28400.417891652540529391928772872912911711273054819622052612.68%2153782.79%1579122047.46%674136549.38%31965149.00%11277821198346578287
23Wild1010000013-21010000013-20000000000000.00012300293919217287291291172341417200.00%6183.33%0579122047.46%674136549.38%31965149.00%11277821198346578287
24Wolf Pack2020000039-61010000034-11010000005-500.0003690029391924428729129117631514456233.33%7271.43%0579122047.46%674136549.38%31965149.00%11277821198346578287
25Wolves1010000025-3000000000001010000025-300.00023500293919224287291291172058309111.11%4250.00%0579122047.46%674136549.38%31965149.00%11277821198346578287
_Since Last GM Reset4816260121289126-37231011001015160-925615011113866-28400.417891652540529391928772872912911711273054819622052612.68%2153782.79%1579122047.46%674136549.38%31965149.00%11277821198346578287
_Vs Conference351217012126992-231989001014455-111648011112537-12320.45769126195022939192632287291291178112223397011562214.10%1522782.24%0579122047.46%674136549.38%31965149.00%11277821198346578287
_Vs Division1648011012946-17834000001926-7814011011020-10120.37529558401293919231228729129117395107155356821619.51%711184.51%0579122047.46%674136549.38%31965149.00%11277821198346578287

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4840L189165254877112730548196205
All Games
GPWLOTWOTL SOWSOLGFGA
481626121289126
Home Games
GPWLOTWOTL SOWSOLGFGA
23101101015160
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2561511113866
Last 10 Games
WLOTWOTL SOWSOL
450001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2052612.68%2153782.79%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
287291291172939192
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
579122047.46%674136549.38%31965149.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11277821198346578287


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-025Bears1Penguins2LXXBoxScore
3 - 2018-10-0422Penguins2Bears3WBoxScore
6 - 2018-10-0745Gulls3Bears4WBoxScore
9 - 2018-10-1063Senators1Bears2WBoxScore
12 - 2018-10-1383Bears1Gulls2LBoxScore
14 - 2018-10-1596Penguins3Bears1LBoxScore
16 - 2018-10-17111Bears2Phantoms0WBoxScore
18 - 2018-10-19129Falcons1Bears0LBoxScore
20 - 2018-10-21142Bears1Penguins2LBoxScore
22 - 2018-10-23157Gulls6Bears1LBoxScore
24 - 2018-10-25172Bears1Phantoms2LXBoxScore
25 - 2018-10-26182Bears1Americans0WBoxScore
28 - 2018-10-29200Reign0Bears2WBoxScore
30 - 2018-10-31215Bears0Barracuda1LBoxScore
32 - 2018-11-02229Devils5Bears1LBoxScore
34 - 2018-11-04242Bears3Senators2WXBoxScore
36 - 2018-11-06257Bears2Marlies1WBoxScore
37 - 2018-11-07267Crunch2Bears3WBoxScore
40 - 2018-11-10287Stars2Bears1LBoxScore
42 - 2018-11-12295Bears2Stars4LBoxScore
45 - 2018-11-15322Bears3Pirates4LBoxScore
46 - 2018-11-16330Condors0Bears3WBoxScore
49 - 2018-11-19351Bears4Barracuda2WBoxScore
50 - 2018-11-20363Monsters2Bears4WBoxScore
53 - 2018-11-23380Wild3Bears1LBoxScore
55 - 2018-11-25393Bears0Icehogs1LBoxScore
57 - 2018-11-27408Bears1Griffins6LBoxScore
59 - 2018-11-29422Moose5Bears0LBoxScore
62 - 2018-12-02444Penguins4Bears3LBoxScore
65 - 2018-12-05469Admirals0Bears2WBoxScore
67 - 2018-12-07481Bears1Gulls3LBoxScore
69 - 2018-12-09498Crunch3Bears2LBoxScore
71 - 2018-12-11505Bears3Reign2WXXBoxScore
73 - 2018-12-13525Bears1Senators4LBoxScore
75 - 2018-12-15536Bears1Monsters3LBoxScore
77 - 2018-12-17548Devils3Bears2LXBoxScore
79 - 2018-12-19566Bears0Sound Tigers3LBoxScore
81 - 2018-12-21576Phantoms3Bears2LBoxScore
83 - 2018-12-23591Bears2Bruins1WBoxScore
85 - 2018-12-25602Bears1Americans4LBoxScore
86 - 2018-12-26611Bears4Devils3WBoxScore
87 - 2018-12-27619Bruins3Bears5WBoxScore
90 - 2018-12-30638Bears2Wolves5LBoxScore
92 - 2019-01-01649Moose3Bears2LXXBoxScore
95 - 2019-01-04672Wolf Pack4Bears3LBoxScore
96 - 2019-01-05687Bears1Stars4LBoxScore
98 - 2019-01-07704Barracuda2Bears4WBoxScore
101 - 2019-01-10723Bears0Wolf Pack5LBoxScore
103 - 2019-01-12735IceCaps-Bears-
105 - 2019-01-14754Bears-Sound Tigers-
107 - 2019-01-16765Senators-Bears-
111 - 2019-01-20795Bears-Moose-
112 - 2019-01-21802Rampage-Bears-
115 - 2019-01-24824Phantoms-Bears-
118 - 2019-01-27846Bears-Falcons-
120 - 2019-01-29857Falcons-Bears-
123 - 2019-02-01881Bruins-Bears-
124 - 2019-02-02890Bears-Checkers-
126 - 2019-02-04907Bears-Wolf Pack-
128 - 2019-02-06922Sound Tigers-Bears-
130 - 2019-02-08943Falcons-Bears-
132 - 2019-02-10953Bears-Crunch-
136 - 2019-02-14975Monsters-Bears-
137 - 2019-02-15984Bears-Penguins-
140 - 2019-02-181003Reign-Bears-
142 - 2019-02-201019Bears-Comets-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231034Gulls-Bears-
146 - 2019-02-241045Bears-Wolves-
150 - 2019-02-281067Heat-Bears-
153 - 2019-03-031089Senators-Bears-
154 - 2019-03-041096Bears-Penguins-
157 - 2019-03-071114Bears-Comets-
159 - 2019-03-091127Heat-Bears-
163 - 2019-03-131151Griffins-Bears-
165 - 2019-03-151155Bears-Phantoms-
166 - 2019-03-161160Bears-Devils-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,180,383$ 938,833$ 938,833$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 566,297$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 11,472$ 768,624$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20184816260121289126-37231011001015160-925615011113866-2840891652540529391928772872912911711273054819622052612.68%2153782.79%1579122047.46%674136549.38%31965149.00%11277821198346578287
Total Regular Season4816260121289126-37231011001015160-925615011113866-2840891652540529391928772872912911711273054819622052612.68%2153782.79%1579122047.46%674136549.38%31965149.00%11277821198346578287