Bears

GP: 6 | W: 1 | L: 5 | OTL: 0 | P: 2
GF: 0 | GA: 4 | PP%: 7.69% | PK%: 90.00%
GM : Jeremy Hiemstra | Morale : 50 | Team Overall : 57
Next Games vs Devils
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Zach SanfordXXX100.006242847376323055425655564244445750530
2Tim McGauley (R)X100.007668946568515250635144624244445450530
3Yannick WeberX98.007543897772597755254648607568695850620
4Nick SeelerX98.007374746676658060255447742546466150620
5Ryan JohnstonX100.007063867063606350255342594044445450560
6Colby Williams (R)X100.006667626667727948254041563944445150560
7Connor Hobbs (R)X100.006769636869677151254741573944445350560
8Tyler LewingtonX100.006269476269788746253640543844444950550
Scratches
1Travis BoydXX97.007066786366848965806561625844446550620
2Marko DanoXX97.007643918066485562445459672559596350600
3Nic PetanXXX94.006140877759528264475064652556566450600
4Nathan WalkerX84.807064836464676961505760615744446250580
5Thomas DiPauliXX97.007167816567666955694758605544445950560
6Jason AkesonX93.107668936568525255505947634544445750550
TEAM AVERAGE97.06706079696861685643515161434848585057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Joonas Korpisalo99.00555857755852525463554951515650560
2Vitek Vanecek100.00506480684654505651513044445350530
Scratches
TEAM AVERAGE99.5053616972525351555753404848555055
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff54455364496655CAN5411,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Zach SanfordBears (WSH)C/LW/RW6011-300154000.00%07913.3100007000020042.86%700000.2500000000
2Marko DanoBears (WSH)C/RW4101-6005970014.29%18020.181012100000110034.38%3200000.2500000000
3Yannick WeberBears (WSH)D6011-360765000.00%112821.38011317000014000.00%000000.1601000000
4Nic PetanBears (WSH)C/LW/RW6101-620413100010.00%011419.15101218000090033.33%1200000.1711000010
5Travis BoydBears (WSH)C/RW4011-3606113000.00%19323.32011013000080060.00%6000000.2100000000
6Tyler LewingtonBears (WSH)D6011-540844000.00%210717.9900006000012000.00%000000.1900000000
7Nick SeelerBears (WSH)D6011-3605164000.00%812821.43011117000013000.00%000000.1600000000
8Jason AkesonBears (WSH)RW5000-3403144000.00%18517.13000112000000085.71%700000.0000000000
9Nathan WalkerBears (WSH)LW1000000012000.00%099.500000200000000.00%000000.0000000000
10Ryan JohnstonBears (WSH)D6000-400843000.00%311919.91000215000010000.00%000000.0000000000
11Colby WilliamsBears (WSH)D6000-600330000.00%410918.2800001000007000.00%200000.0000000000
12Thomas DiPauliBears (WSH)C/LW4000-420696000.00%08621.73000313000040051.52%6600000.0000000000
13Connor HobbsBears (WSH)D6000-3801231000.00%312320.6400011600009000.00%000000.0000000000
14Tim McGauleyBears (WSH)C6000-320480000.00%18714.63000010000020060.34%5800000.0000000000
Team Total or Average72257-524007210653003.77%25135618.842351517300001080052.87%24400000.1012000010
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Joonas KorpisaloBears (WSH)61500.8582.6534001151060001.000360100
2Vitek VanecekBears (WSH)10000.8332.502400160000.000006000
Team Total or Average71500.8572.6336501161120001.000366100


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Colby WilliamsBears (WSH)D231995-01-25Yes191 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$500,000$Link
Connor HobbsBears (WSH)D211997-01-04Yes187 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Jason AkesonBears (WSH)RW281990-06-03No190 Lbs5 ft10NoNoNo1UFAPro & Farm550,000$Link
Joonas KorpisaloBears (WSH)C241994-04-28No190 Lbs6 ft3NoNoNo1ELCPro & Farm750,000$Link
Marko DanoBears (WSH)C/RW231994-11-29No212 Lbs5 ft11NoNoNo2ELCPro & Farm750,000$750,000$Link
Nathan Walker (Out of Payroll)Bears (WSH)LW241994-02-06No186 Lbs5 ft8NoNoNo2ELCPro & Farm750,000$750,000$Link
Nic PetanBears (WSH)C/LW/RW231995-03-21No179 Lbs5 ft9NoNoNo1ELCPro & Farm850,000$Link
Nick SeelerBears (WSH)D251993-06-02No192 Lbs6 ft0NoNoNo2ELCPro & Farm575,000$575,000$Link
Ryan JohnstonBears (WSH)D261992-02-14No176 Lbs5 ft10NoNoNo1ELCPro & Farm600,000$Link
Thomas DiPauliBears (WSH)C/LW241994-04-28No187 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$650,000$Link
Tim McGauleyBears (WSH)C231995-07-23Yes175 Lbs6 ft0NoNoNo1ELCPro & Farm663,333$Link
Travis BoydBears (WSH)C/RW251993-09-14No191 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$Link
Tyler LewingtonBears (WSH)D231994-12-05No189 Lbs6 ft1NoNoNo1ELCPro & Farm500,000$Link
Vitek VanecekBears (WSH)C/LW221996-01-08No180 Lbs6 ft1NoNoNo2ELCPro & Farm850,000$850,000$Link
Yannick WeberBears (WSH)D301988-09-22No200 Lbs5 ft11NoNoNo1UFAPro & Farm650,000$Link
Zach SanfordBears (WSH)C/LW/RW231994-11-09No192 Lbs6 ft4NoNoNo2ELCPro & Farm750,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1624.19189 Lbs6 ft01.56649,271$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
230122
3Zach SanfordTim McGauley20122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber40122
2Connor HobbsRyan Johnston30122
3Colby WilliamsTyler Lewington20122
4Nick SeelerYannick Weber10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
240122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor HobbsRyan Johnston40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor HobbsRyan Johnston40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Nick SeelerYannick Weber60122
240122Connor HobbsRyan Johnston40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor HobbsRyan Johnston40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nick SeelerYannick Weber
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nick SeelerYannick Weber
Extra Forwards
Normal PowerPlayPenalty Kill
Tim McGauley, Zach Sanford, Tim McGauley, Zach Sanford
Extra Defensemen
Normal PowerPlayPenalty Kill
Colby Williams, Tyler Lewington, Connor HobbsColby WilliamsTyler Lewington, Connor Hobbs
Penalty Shots
, , , ,
Goalie
#1 : Joonas Korpisalo, #2 : Vitek Vanecek


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Devils2020000015-41010000002-21010000013-200.00011200012127202225530414211417.14%60100.00%06013145.80%7214151.06%458155.56%13995147447838
2Gulls10000010101000000000001000001010121.000101010121102022255136820300.00%40100.00%06013145.80%7214151.06%458155.56%13995147447838
3Penguins1010000005-5000000000001010000005-500.00000000012132022255217817200.00%40100.00%06013145.80%7214151.06%458155.56%13995147447838
4Phantoms1010000024-2000000000001010000024-200.0002460001212020222553274184125.00%220.00%06013145.80%7214151.06%458155.56%13995147447838
5Senators1010000002-21010000002-20000000000000.00000000012192022255163810300.00%40100.00%06013145.80%7214151.06%458155.56%13995147447838
Since Last GM Reset60500010416-122020000004-440300010412-820.1674590101216920222551122742862627.69%20290.00%06013145.80%7214151.06%458155.56%13995147447838
Total60500010416-122020000004-440300010412-820.1674590101216920222551122742862627.69%20290.00%06013145.80%7214151.06%458155.56%13995147447838
Vs Conference60500010416-122020000004-440300010412-820.1674590101216920222551122742862627.69%20290.00%06013145.80%7214151.06%458155.56%13995147447838
Vs Division40300010314-111010000002-230200010312-920.2503580001215020222558318265620210.00%12283.33%06013145.80%7214151.06%458155.56%13995147447838

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
62SOW14596911227428601
All Games
GPWLOTWOTL SOWSOLGFGA
6050010416
Home Games
GPWLOTWOTL SOWSOLGFGA
202000004
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4030010412
Last 10 Games
WLOTWOTL SOWSOL
050010
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2627.69%20290.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
20222550121
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
6013145.80%7214151.06%458155.56%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
13995147447838


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-172Bears1Devils3LBoxScore
2 - 2018-09-1817Devils2Bears0LBoxScore
3 - 2018-09-1940Senators2Bears0LBoxScore
4 - 2018-09-2053Bears0Penguins5LBoxScore
6 - 2018-09-2264Bears2Phantoms4LBoxScore
7 - 2018-09-2377Bears1Gulls0WXXBoxScore
8 - 2018-09-2492Gulls-Bears-
10 - 2018-09-26111Penguins-Bears-
11 - 2018-09-27118Bears-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
14 - 2018-09-30153Phantoms-Bears-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
3 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
963,833$ 963,833$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 8 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT