Bears

GP: 20 | W: 9 | L: 9 | OTL: 2 | P: 20
GF: 18 | GA: 25 | PP%: 11.49% | PK%: 90.00%
GM : Jeremy Hiemstra | Morale : 50 | Team Overall : 58
Next Games vs Penguins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nathan WalkerX100.007064836464676961505760615744446250580
2Jason AkesonX100.007668936568525255505947634544445750550
3Zach SanfordXXX100.006242847376323055425655564244445750530
4Tim McGauley (R)X100.007668946568515250635144624244445450530
5Yannick WeberX100.007543897772597755254648607568695850620
6Nick SeelerX100.007374746676658060255447742546466150620
7Colby Williams (R)X100.006667626667727948254041563944445150560
8Connor Hobbs (R)X100.006769636869677151254741573944445350560
9Tyler LewingtonX100.006269476269788746253640543844444950550
Scratches
1Travis BoydXX100.007066786366848965806561625844446550620
2Marko DanoXX100.007643918066485562445459672559596350600
3Nic PetanXXX100.006140877759528264475064652556566450600
4Thomas DiPauliXX100.007167816567666955694758605544445950560
5Ryan JohnstonX93.377063867063606350255342594044445450560
TEAM AVERAGE99.53706079696861685643515161434848585057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Marek Langhamer99.00664961727065727571713044446750640
2Vitek Vanecek100.00506480684654505651513044445350530
Scratches
TEAM AVERAGE99.5058577170586061666161304444605059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff54455364496655CAN5411,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jason AkesonBears (WSH)RW20279-5803131190010.53%233716.860442360000101050.00%2400000.5300000004
2Nathan WalkerBears (WSH)LW15459-11002930300013.33%026117.45112823000061053.33%1500000.6900000101
3Connor HobbsBears (WSH)D20336-13003012210014.29%1541420.7410114640000390016.67%1200000.2900000110
4Nic PetanBears (WSH)C/LW/RW11415020420290013.79%123521.4030311330000201141.67%2400010.4201000110
5Travis BoydBears (WSH)C/RW8145040122790011.11%221126.400002290000200056.79%16200000.4701000012
6Nick SeelerBears (WSH)D20145-6180343120005.00%1644122.060331574000045100.00%100000.2300000020
7Yannick WeberBears (WSH)D20134-8100293513007.69%1841620.801231072000045000.00%000000.1900000001
8Colby WilliamsBears (WSH)D20123-9120382180012.50%1336618.330113260000261040.00%1000000.1600000000
9Marko DanoBears (WSH)C/RW511202091170014.29%110220.540000160000121037.50%800000.3900000010
10Trevor van RiemsdykCapitalsD31120000560016.67%07525.1011241400004000.00%000000.5300000000
11Ryan JohnstonBears (WSH)D12112-720128100010.00%1123219.40011841000026000.00%000000.1700000000
12Tyler LewingtonBears (WSH)D20022-42805054000.00%1635517.77000190001320025.00%400000.1100000001
13Thomas DiPauliBears (WSH)C/LW6022-12010118000.00%111719.57011317000060038.14%11800000.3401000010
14Tim McGauleyBears (WSH)C20022-9115162810000.00%227213.60011021000060051.58%19000000.1500010000
15Zach SanfordBears (WSH)C/LW/RW15101-86041318005.56%016110.7700007000020046.67%1500000.1200000001
Team Total or Average215213859-591455308288212009.91%98400118.61715228149100013066148.37%58300010.29030103710
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marek LanghamerBears (WSH)209920.9131.92115903374250000.5002200610
2Vitek VanecekBears (WSH)20000.8333.5351003180000.0000020000
Team Total or Average229920.9101.98121003404430000.50022020610


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Colby WilliamsBears (WSH)D231995-01-25Yes191 Lbs5 ft11NoNoNo2ELCPro & Farm500,000$500,000$Link
Connor HobbsBears (WSH)D211997-01-04Yes187 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$500,000$500,000$Link
Jason AkesonBears (WSH)RW281990-06-03No190 Lbs5 ft10NoNoNo1UFAPro & Farm550,000$Link
Marek LanghamerBears (WSH)LW/RW241994-07-21No193 Lbs6 ft2NoNoNo1ELCPro & Farm500,000$Link
Marko DanoBears (WSH)C/RW231994-11-29No212 Lbs5 ft11NoNoNo2ELCPro & Farm750,000$750,000$Link
Nathan WalkerBears (WSH)LW241994-02-06No186 Lbs5 ft8NoNoNo2ELCPro & Farm750,000$750,000$Link
Nic PetanBears (WSH)C/LW/RW231995-03-21No179 Lbs5 ft9NoNoNo1ELCPro & Farm850,000$Link
Nick SeelerBears (WSH)D251993-06-02No192 Lbs6 ft0NoNoNo2ELCPro & Farm575,000$575,000$Link
Ryan Johnston (Out of Payroll)Bears (WSH)D261992-02-14No176 Lbs5 ft10NoNoNo1ELCPro & Farm600,000$Link
Thomas DiPauliBears (WSH)C/LW241994-04-28No187 Lbs5 ft11NoNoNo2ELCPro & Farm650,000$650,000$Link
Tim McGauleyBears (WSH)C231995-07-23Yes175 Lbs6 ft0NoNoNo1ELCPro & Farm663,333$Link
Travis BoydBears (WSH)C/RW251993-09-14No191 Lbs5 ft11NoNoNo1ELCPro & Farm500,000$Link
Tyler LewingtonBears (WSH)D231994-12-05No189 Lbs6 ft1NoNoNo1ELCPro & Farm500,000$Link
Vitek VanecekBears (WSH)C/LW221996-01-08No180 Lbs6 ft1NoNoNo2ELCPro & Farm850,000$850,000$Link
Yannick WeberBears (WSH)D301988-09-22No200 Lbs5 ft11NoNoNo1UFAPro & Farm650,000$Link
Zach SanfordBears (WSH)C/LW/RW241994-11-09No192 Lbs6 ft4NoNoNo2ELCPro & Farm750,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1624.25189 Lbs6 ft01.56633,646$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Nathan WalkerJason Akeson30122
3Zach SanfordTim McGauley20122
4Nathan Walker10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber40122
2Connor Hobbs30122
3Colby WilliamsTyler Lewington20122
4Nick SeelerYannick Weber10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Nathan WalkerJason Akeson40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor Hobbs40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Nathan Walker40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor Hobbs40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Nick SeelerYannick Weber60122
240122Connor Hobbs40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Nathan Walker40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nick SeelerYannick Weber60122
2Connor Hobbs40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nick SeelerYannick Weber
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nick SeelerYannick Weber
Extra Forwards
Normal PowerPlayPenalty Kill
Tim McGauley, Zach Sanford, Tim McGauley, Zach Sanford
Extra Defensemen
Normal PowerPlayPenalty Kill
Colby Williams, Tyler Lewington, Connor HobbsColby WilliamsTyler Lewington, Connor Hobbs
Penalty Shots
, , , Nathan Walker,
Goalie
#1 : Marek Langhamer, #2 : Vitek Vanecek


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000101000000000001100000010121.00012301716811210810410592371017300.00%50100.00%023348947.65%26056845.77%12023950.21%470326500146242121
2Barracuda1010000001-1000000000001010000001-100.0000000071681710810410591571612400.00%80100.00%023348947.65%26056845.77%12023950.21%470326500146242121
3Crunch11000000321110000003210000000000021.00034700716811810810410591856197114.29%3166.67%023348947.65%26056845.77%12023950.21%470326500146242121
4Devils1010000015-41010000015-40000000000000.000123007168116108104105926512317114.29%50100.00%023348947.65%26056845.77%12023950.21%470326500146242121
5Falcons1010000001-11010000001-10000000000000.0000000071681161081041059144413400.00%20100.00%023348947.65%26056845.77%12023950.21%470326500146242121
6Gulls31200000611-52110000059-41010000012-120.3336101600716814710810410596123144410110.00%7357.14%023348947.65%26056845.77%12023950.21%470326500146242121
7Marlies11000000211000000000001100000021121.0002460071681211081041059296822500.00%40100.00%123348947.65%26056845.77%12023950.21%470326500146242121
8Penguins4120000169-32110000045-12010000124-230.3756121800716817210810410598221387421523.81%18194.44%023348947.65%26056845.77%12023950.21%470326500146242121
9Phantoms21000100321000000000002100010032130.75036901716812810810410595814175710110.00%60100.00%023348947.65%26056845.77%12023950.21%470326500146242121
10Reign11000000202110000002020000000000021.0002460171681141081041059215823400.00%40100.00%023348947.65%26056845.77%12023950.21%470326500146242121
11Senators21001000532110000002111000100032141.00051015007168132108104105951111834300.00%9188.89%023348947.65%26056845.77%12023950.21%470326500146242121
Since Last GM Reset2089011013241-91055000001825-71034011011416-2200.50032609203716813231081041059443126169386871011.49%80890.00%123348947.65%26056845.77%12023950.21%470326500146242121
13Stars2020000036-31010000012-11010000024-200.0003690071681401081041059451818409111.11%9277.78%023348947.65%26056845.77%12023950.21%470326500146242121
Total2089011013241-91055000001825-71034011011416-2200.50032609203716813231081041059443126169386871011.49%80890.00%123348947.65%26056845.77%12023950.21%470326500146242121
Vs Conference1667011012634-8954000001723-671301101911-2160.500264874027168125010810410593469513330770912.86%62690.32%023348947.65%26056845.77%12023950.21%470326500146242121
Vs Division744011011016-633200000510-54120110156-1120.85710203001716811161081041059166406716238718.42%29196.55%023348947.65%26056845.77%12023950.21%470326500146242121

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2020L232609232344312616938603
All Games
GPWLOTWOTL SOWSOLGFGA
208911013241
Home Games
GPWLOTWOTL SOWSOLGFGA
105500001825
Visitor Games
GPWLOTWOTL SOWSOLGFGA
103411011416
Last 10 Games
WLOTWOTL SOWSOL
441100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
871011.49%80890.00%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
108104105971681
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
23348947.65%26056845.77%12023950.21%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
470326500146242121


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-025Bears1Penguins2LXXBoxScore
3 - 2018-10-0422Penguins2Bears3WBoxScore
6 - 2018-10-0745Gulls3Bears4WBoxScore
9 - 2018-10-1063Senators1Bears2WBoxScore
12 - 2018-10-1383Bears1Gulls2LBoxScore
14 - 2018-10-1596Penguins3Bears1LBoxScore
16 - 2018-10-17111Bears2Phantoms0WBoxScore
18 - 2018-10-19129Falcons1Bears0LBoxScore
20 - 2018-10-21142Bears1Penguins2LBoxScore
22 - 2018-10-23157Gulls6Bears1LBoxScore
24 - 2018-10-25172Bears1Phantoms2LXBoxScore
25 - 2018-10-26182Bears1Americans0WBoxScore
28 - 2018-10-29200Reign0Bears2WBoxScore
30 - 2018-10-31215Bears0Barracuda1LBoxScore
32 - 2018-11-02229Devils5Bears1LBoxScore
34 - 2018-11-04242Bears3Senators2WXBoxScore
36 - 2018-11-06257Bears2Marlies1WBoxScore
37 - 2018-11-07267Crunch2Bears3WBoxScore
40 - 2018-11-10287Stars2Bears1LBoxScore
42 - 2018-11-12295Bears2Stars4LBoxScore
45 - 2018-11-15322Bears-Pirates-
46 - 2018-11-16330Condors-Bears-
49 - 2018-11-19351Bears-Barracuda-
50 - 2018-11-20363Monsters-Bears-
53 - 2018-11-23380Wild-Bears-
55 - 2018-11-25393Bears-Icehogs-
57 - 2018-11-27408Bears-Griffins-
59 - 2018-11-29422Moose-Bears-
62 - 2018-12-02444Penguins-Bears-
65 - 2018-12-05469Admirals-Bears-
67 - 2018-12-07481Bears-Gulls-
69 - 2018-12-09498Crunch-Bears-
71 - 2018-12-11505Bears-Reign-
73 - 2018-12-13525Bears-Senators-
75 - 2018-12-15536Bears-Monsters-
77 - 2018-12-17548Devils-Bears-
79 - 2018-12-19566Bears-Sound Tigers-
81 - 2018-12-21576Phantoms-Bears-
83 - 2018-12-23591Bears-Bruins-
85 - 2018-12-25602Bears-Americans-
86 - 2018-12-26611Bears-Devils-
87 - 2018-12-27619Bruins-Bears-
90 - 2018-12-30638Bears-Wolves-
92 - 2019-01-01649Moose-Bears-
95 - 2019-01-04672Wolf Pack-Bears-
96 - 2019-01-05687Bears-Stars-
98 - 2019-01-07704Barracuda-Bears-
101 - 2019-01-10723Bears-Wolf Pack-
103 - 2019-01-12735IceCaps-Bears-
105 - 2019-01-14754Bears-Sound Tigers-
107 - 2019-01-16765Senators-Bears-
111 - 2019-01-20795Bears-Moose-
112 - 2019-01-21802Rampage-Bears-
115 - 2019-01-24824Phantoms-Bears-
118 - 2019-01-27846Bears-Falcons-
120 - 2019-01-29857Falcons-Bears-
123 - 2019-02-01881Bruins-Bears-
124 - 2019-02-02890Bears-Checkers-
126 - 2019-02-04907Bears-Wolf Pack-
128 - 2019-02-06922Sound Tigers-Bears-
130 - 2019-02-08943Falcons-Bears-
132 - 2019-02-10953Bears-Crunch-
136 - 2019-02-14975Monsters-Bears-
137 - 2019-02-15984Bears-Penguins-
140 - 2019-02-181003Reign-Bears-
142 - 2019-02-201019Bears-Comets-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231034Gulls-Bears-
146 - 2019-02-241045Bears-Wolves-
150 - 2019-02-281067Heat-Bears-
153 - 2019-03-031089Senators-Bears-
154 - 2019-03-041096Bears-Penguins-
157 - 2019-03-071114Bears-Comets-
159 - 2019-03-091127Heat-Bears-
163 - 2019-03-131151Griffins-Bears-
165 - 2019-03-151155Bears-Phantoms-
166 - 2019-03-161160Bears-Devils-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,013,833$ 1,013,833$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
522,472$ 0$ 259,372$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 125 11,916$ 1,489,500$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182089011013241-91055000001825-71034011011416-22032609203716813231081041059443126169386871011.49%80890.00%123348947.65%26056845.77%12023950.21%470326500146242121
Total Regular Season2089011013241-91055000001825-71034011011416-22032609203716813231081041059443126169386871011.49%80890.00%123348947.65%26056845.77%12023950.21%470326500146242121