Sound Tigers

GP: 47 | W: 27 | L: 19 | OTL: 1 | P: 55
GF: 94 | GA: 89 | PP%: 10.61% | PK%: 88.89%
GM : Patrick Johnson | Morale : 50 | Team Overall : 59
Next Games #754 vs Bears
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Oscar Lindberg (C)X95.007644928072628159625366702562636750630
2Mason Appleton (R)X98.007675786675727465806660655744446550620
3Paul CareyX99.007643898070567858426162672555566650620
4Oskar SundqvistXXX99.007644896977577661726055782552536450620
5Zack MacEwen (R)XX100.007777766677778259745856645344446250600
6Nicolas KerdilesX99.007572816672585762786160645744446350590
7Julien Gauthier (R)X100.008684896584677055504560685744446250590
8Tobias LindbergXX100.007875856975677155504956645344446050580
9Adam Brooks (R)X100.007464986364727852654851614844445850560
10Ryan WhiteXXX100.006373416573616353665448564644445450540
11Steven Kampfer (A)X98.008696756871725859254547802561616250640
12Oscar Fantenberg (R)X97.008167877674646071256149612546466150620
13Kevin CzuczmanX100.007776806576818854255241633945455650610
14Filip Hronek (R)X98.006964817264788456254948604644445850600
15Jacob MacDonald (R)X100.007773866173666862255258655544446350600
16Mitchell Vande Sompel (R)X100.007268826668737855255046614444445850590
Scratches
1Tommy Wingels (A)XX95.008956827873619160676062776370736850660
2Landon FerraroXXX100.007368856568575759745359655654556150580
3Jan Mandat (R)X100.007671866671677247594445614344445450540
4Jonne Tammela (R)XX100.007267836267424149504548594644445350510
5Anthony BeauregardX100.006657866557505147594544564244445150500
6Gabriel Carlsson (R)X100.006942907871576955255247612545455850590
7Jake Bischoff (R)X100.007571856471687350254242614044445450570
8Parker Wotherspoon (R)X100.007064856264727852254049594744445650570
9Kevin Ekman-Larsson (R)X100.006965776765616259254757605444446050570
10Doyle Somerby (R)X100.008385776585555847253939643744445250570
11Brian StraitX100.007575766575646945253441603944445150560
TEAM AVERAGE99.19756782687264705646515264434748595059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Harri Sateri100.00666885766772627170683045456750650
2Dustin Tokarski98.00606278696268546365633047486250600
Scratches
1Stephon Williams (R)100.00484759754848505449493044444950510
TEAM AVERAGE99.3358597473596355636160304546595059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Joe Sacco66726848484758USA464500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mason AppletonSound Tigers (NYI)C4712122492606387762715.79%590419.242571615610121154063.91%77300000.5314000433
2Steven KampferSound Tigers (NYI)D4541721185151404942119.52%54100422.33369271370000155100.00%000000.4200110311
3Oscar LindbergSound Tigers (NYI)C4371320-82605587792218.86%489920.931451313100001821153.54%77700000.4469000230
4Paul CareySound Tigers (NYI)LW4321517-11204865676122.99%480218.661671212800011040143.65%12600000.4248000201
5Zack MacEwenSound Tigers (NYI)C/RW47891793957048709611.43%278816.78538131620000133048.89%4500000.4301001313
6Oskar SundqvistSound Tigers (NYI)C/LW/RW4710717-428049606671215.15%877316.45224151500110603053.74%14700000.4413000233
7Nicolas KerdilesSound Tigers (NYI)LW47871551204147751510.67%774015.750008861011230164.00%5000000.4111000123
8Julien GauthierSound Tigers (NYI)RW47961515756840786911.54%667614.392131040000011162.50%4000000.4401001111
9Kevin CzuczmanSound Tigers (NYI)D472111347951073423368.70%46105922.54156151420001173100.00%000000.2500001210
10Filip HronekSound Tigers (NYI)D47481234605624274214.81%42101321.56224191460000166000.00%000000.2400000032
11Tommy WingelsSound Tigers (NYI)LW/RW22571242205347445511.36%448221.930118650002850164.02%21400000.5013000141
12Tobias LindbergSound Tigers (NYI)LW/RW475611-22203643482610.42%859012.570002120111933041.67%6000000.3700000112
13Jacob MacDonaldSound Tigers (NYI)D47471133207735312112.90%3380717.171011365000077120.00%000000.2700000142
14Oscar FantenbergSound Tigers (NYI)D39189-4300543623034.35%2184521.69145191250000131100.00%000000.2100000001
15Ryan WhiteSound Tigers (NYI)C/LW/RW4435831002432210114.29%13167.2000003000060066.29%17800000.5000000111
16Adam BrooksSound Tigers (NYI)C44156-140196331343.23%358113.20000110000240157.72%49200000.2100000010
17Mitchell Vande SompelSound Tigers (NYI)D44055332076136300.00%3272016.37000127011069000.00%000000.1400000011
18Gabriel CarlssonSound Tigers (NYI)D70332601063000.00%310715.3600001000012000.00%000000.5600000000
19Landon FerraroSound Tigers (NYI)C/LW/RW3000000132000.00%14113.6800000000050050.00%2600000.0000000000
Team Total or Average75785151236275683010478198125610110.47%2841315517.3821396019215862358150519858.06%292800000.361430113243025
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Harri SateriSound Tigers (NYI)40221710.9071.84237504737810010.74231407404
2Dustin TokarskiSound Tigers (NYI)105200.9211.7348601141770000.5002740101
Team Total or Average50271910.9091.82286205879580010.727334747505


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam BrooksSound Tigers (NYI)C221996-05-06Yes174 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Anthony BeauregardSound Tigers (NYI)C231995-11-14No165 Lbs5 ft7NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Brian StraitSound Tigers (NYI)D311988-01-03No206 Lbs6 ft1NoNoNo1UFAPro & Farm750,000$0$0$NoLink
Doyle SomerbySound Tigers (NYI)D241994-07-04Yes218 Lbs6 ft6NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Dustin TokarskiSound Tigers (NYI)G291989-09-16No205 Lbs6 ft0NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Filip HronekSound Tigers (NYI)D211997-11-02Yes163 Lbs6 ft0NoNoNo3ELCPro & Farm850,000$0$0$NoLink
Gabriel CarlssonSound Tigers (NYI)D221997-01-02Yes191 Lbs6 ft4NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Harri SateriSound Tigers (NYI)G291989-12-29No205 Lbs6 ft1NoNoNo3UFAPro & Farm750,000$0$0$NoLink
Jacob MacDonaldSound Tigers (NYI)D251993-02-26Yes201 Lbs6 ft0NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Jake BischoffSound Tigers (NYI)D241994-07-25Yes194 Lbs6 ft1NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Jan MandatSound Tigers (NYI)C231995-11-17Yes196 Lbs6 ft0NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Jonne TammelaSound Tigers (NYI)LW/RW211997-08-05Yes187 Lbs5 ft10NoNoNo3ELCPro & Farm600,000$0$0$NoLink
Julien GauthierSound Tigers (NYI)RW211997-10-15Yes225 Lbs6 ft4NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Kevin CzuczmanSound Tigers (NYI)D281991-01-09No206 Lbs6 ft2NoNoNo2UFAPro & Farm925,000$0$0$NoLink
Kevin Ekman-LarssonSound Tigers (NYI)D231995-01-26Yes181 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Landon FerraroSound Tigers (NYI)C/LW/RW271991-08-08No186 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Mason AppletonSound Tigers (NYI)C231996-01-15Yes201 Lbs6 ft2NoNoNo3ELCPro & Farm500,000$0$0$NoLink
Mitchell Vande SompelSound Tigers (NYI)D211997-02-11Yes192 Lbs5 ft10NoNoNo3ELCPro & Farm700,000$0$0$NoLink
Nicolas KerdilesSound Tigers (NYI)LW241994-10-01No191 Lbs6 ft2NoNoNo2ELCPro & Farm650,000$0$0$NoLink
Oscar FantenbergSound Tigers (NYI)D271991-10-07Yes203 Lbs6 ft0NoNoNo4RFAPro & Farm650,000$0$0$NoLink
Oscar LindbergSound Tigers (NYI)C271991-10-28No202 Lbs6 ft1NoNoNo3RFAPro & Farm1,700,000$0$0$NoLink
Oskar SundqvistSound Tigers (NYI)C/LW/RW241994-03-23No209 Lbs6 ft3NoNoNo1ELCPro & Farm700,000$0$0$NoLink
Parker WotherspoonSound Tigers (NYI)D211997-08-24Yes168 Lbs6 ft0NoNoNo3ELCPro & Farm600,000$0$0$NoLink
Paul CareySound Tigers (NYI)LW301988-09-25No198 Lbs6 ft1NoNoNo1UFAPro & Farm700,000$0$0$NoLink
Ryan WhiteSound Tigers (NYI)C/LW/RW301988-03-16No200 Lbs6 ft0NoNoNo2UFAPro & Farm1,000,000$0$0$NoLink
Stephon WilliamsSound Tigers (NYI)G251993-04-28Yes196 Lbs6 ft3NoNoNo1ELCPro & Farm600,000$0$0$NoLink
Steven KampferSound Tigers (NYI)D301988-09-23No192 Lbs5 ft11NoNoNo1UFAPro & Farm750,000$0$0$NoLink
Tobias LindbergSound Tigers (NYI)LW/RW231995-07-22No225 Lbs6 ft3NoNoNo1ELCPro & Farm650,000$0$0$NoLink
Tommy WingelsSound Tigers (NYI)LW/RW301988-04-11No200 Lbs6 ft0NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Zack MacEwenSound Tigers (NYI)C/RW221996-07-08Yes212 Lbs6 ft3NoNoNo4ELCPro & Farm850,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3025.00196 Lbs6 ft12.30732,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Mason AppletonOskar Sundqvist40122
2Paul CareyOscar LindbergZack MacEwen30122
3Nicolas KerdilesAdam BrooksJulien Gauthier20122
4Tobias LindbergRyan White10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferOscar Fantenberg40122
2Kevin CzuczmanFilip Hronek30122
3Jacob MacDonaldMitchell Vande Sompel20122
4Steven KampferOscar Fantenberg10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Oscar LindbergOskar Sundqvist60122
2Paul CareyMason AppletonZack MacEwen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferOscar Fantenberg60122
2Kevin CzuczmanFilip Hronek40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Oscar Lindberg60122
2Paul CareyMason Appleton40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferOscar Fantenberg60122
2Kevin CzuczmanFilip Hronek40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Steven KampferOscar Fantenberg60122
2Oscar Lindberg40122Kevin CzuczmanFilip Hronek40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Oscar Lindberg60122
2Paul CareyMason Appleton40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Steven KampferOscar Fantenberg60122
2Kevin CzuczmanFilip Hronek40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Oscar LindbergOskar SundqvistSteven KampferOscar Fantenberg
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Oscar LindbergOskar SundqvistSteven KampferOscar Fantenberg
Extra Forwards
Normal PowerPlayPenalty Kill
Nicolas Kerdiles, Julien Gauthier, Tobias LindbergNicolas Kerdiles, Julien GauthierTobias Lindberg
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob MacDonald, Mitchell Vande Sompel, Kevin CzuczmanJacob MacDonaldMitchell Vande Sompel, Kevin Czuczman
Penalty Shots
, Oscar Lindberg, Paul Carey, Mason Appleton, Oskar Sundqvist
Goalie
#1 : Dustin Tokarski, #2 : Harri Sateri


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda1010000023-11010000023-10000000000000.00023500302926181925827027946206823700.00%4175.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
2Bears11000000303110000003030000000000021.000358013029261827258270279461074285240.00%20100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
3Bruins2020000028-62020000028-60000000000000.0002350030292618422582702794626723371200.00%8187.50%0720121359.36%712129654.94%37062759.01%11978381106326566291
4Checkers1010000013-2000000000001010000013-200.000112003029261811258270279462952323300.00%9366.67%0720121359.36%712129654.94%37062759.01%11978381106326566291
5Condors11000000101110000001010000000000021.0001230130292618232582702794662813700.00%40100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
6Crunch211000004401010000001-11100000043120.50047110030292618302582702794649154039500.00%8275.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
7Devils42100010972100000102113210000076160.75091322003029261880258270279468125441082214.55%22386.36%1720121359.36%712129654.94%37062759.01%11978381106326566291
8Falcons2010001046-2100000103211010000014-320.50045900302926184525827027946471439507114.29%14285.71%0720121359.36%712129654.94%37062759.01%11978381106326566291
9Griffins301000208802010001045-11000001043140.6678101800302926184425827027946961952677228.57%24387.50%0720121359.36%712129654.94%37062759.01%11978381106326566291
10Gulls330000001028220000006151100000041361.000101929013029261851258270279465317306512433.33%12191.67%0720121359.36%712129654.94%37062759.01%11978381106326566291
11Heat1010000001-1000000000001010000001-100.000000003029261813258270279461551323400.00%30100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
12IceCaps1010000013-21010000013-20000000000000.00012300302926181825827027946218431700.00%20100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
13Icehogs11000000312000000000001100000031221.0003690030292618102582702794616810286116.67%5180.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
14Monsters2010001056-11010000035-21000001021120.5005813003029261837258270279465113223310110.00%100100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
15Moose211000005321010000012-11100000041320.500571200302926183025827027946431328425240.00%110100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
16Penguins32100000532220000005231010000001-140.66751015003029261849258270279464617284810220.00%14192.86%0720121359.36%712129654.94%37062759.01%11978381106326566291
17Phantoms22000000413110000002111100000020241.00048120130292618432582702794640132046900.00%100100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
18Pirates11000000211110000002110000000000021.000246003029261824258270279461941031200.00%50100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
19Reign200010015501000000123-11000100032130.75057120030292618302582702794636192445700.00%12283.33%0720121359.36%712129654.94%37062759.01%11978381106326566291
20Senators10000010321000000000001000001032121.000336003029261892582702794617712247114.29%50100.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
21Stars10000010431000000000001000001043121.00044800302926181425827027946307221711100.00%10280.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
Total471819010819489524911000314547-223980105049427550.5859415024415302926188202582702794695928657010551982110.61%2432788.89%2720121359.36%712129654.94%37062759.01%11978381106326566291
23Wild21000010312000000000002100001031241.0003470130292618312582702794644920535120.00%10190.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
24Wolf Pack52300000810-24130000069-31100000021140.400815231030292618952582702794610526561242129.52%25292.00%1720121359.36%712129654.94%37062759.01%11978381106326566291
25Wolves2020000004-4000000000002020000004-400.00000000302926182925827027946311418321000.00%9188.89%0720121359.36%712129654.94%37062759.01%11978381106326566291
26Wolves1010000024-2000000000001010000024-200.000246003029261816258270279462861225700.00%5180.00%0720121359.36%712129654.94%37062759.01%11978381106326566291
_Since Last GM Reset471819010819489524911000314547-223980105049427550.5859415024415302926188202582702794695928657010551982110.61%2432788.89%2720121359.36%712129654.94%37062759.01%11978381106326566291
_Vs Conference32141201041696091979000213738-1137301020322210390.609691131821330292618587258270279466241993787121391611.51%1571590.45%2720121359.36%712129654.94%37062759.01%11978381106326566291

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4755L194150244820959286570105515
All Games
GPWLOTWOTL SOWSOLGFGA
47181910819489
Home Games
GPWLOTWOTL SOWSOLGFGA
2491100314547
Visitor Games
GPWLOTWOTL SOWSOLGFGA
239810504942
Last 10 Games
WLOTWOTL SOWSOL
521020
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1982110.61%2432788.89%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
2582702794630292618
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
720121359.36%712129654.94%37062759.01%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11978381106326566291


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0312Wolf Pack2Sound Tigers1LBoxScore
4 - 2018-10-0526Sound Tigers2Monsters1WXXBoxScore
6 - 2018-10-0744Phantoms1Sound Tigers2WBoxScore
8 - 2018-10-0960Sound Tigers4Crunch3WBoxScore
11 - 2018-10-1276Wolf Pack1Sound Tigers2WBoxScore
13 - 2018-10-1491Sound Tigers3Devils4LBoxScore
15 - 2018-10-16103Wolf Pack3Sound Tigers2LBoxScore
18 - 2018-10-19130Penguins1Sound Tigers2WBoxScore
21 - 2018-10-22152Sound Tigers1Falcons4LBoxScore
22 - 2018-10-23161Bruins5Sound Tigers1LBoxScore
26 - 2018-10-27187Moose2Sound Tigers1LBoxScore
28 - 2018-10-29204Sound Tigers2Devils1WBoxScore
31 - 2018-11-01216Sound Tigers2Wild1WXXBoxScore
32 - 2018-11-02225Falcons2Sound Tigers3WXXBoxScore
35 - 2018-11-05250Bruins3Sound Tigers1LBoxScore
37 - 2018-11-07268Sound Tigers2Wolf Pack1WBoxScore
39 - 2018-11-09280Gulls1Sound Tigers3WBoxScore
42 - 2018-11-12297Sound Tigers1Wild0WBoxScore
44 - 2018-11-14312Griffins4Sound Tigers2LBoxScore
46 - 2018-11-16327Sound Tigers0Penguins1LBoxScore
48 - 2018-11-18340Sound Tigers2Wolves4LBoxScore
49 - 2018-11-19348Devils1Sound Tigers2WXXBoxScore
52 - 2018-11-22373IceCaps3Sound Tigers1LBoxScore
54 - 2018-11-24389Sound Tigers1Checkers3LBoxScore
56 - 2018-11-26400Sound Tigers0Wolves2LBoxScore
57 - 2018-11-27409Pirates1Sound Tigers2WBoxScore
59 - 2018-11-29424Sound Tigers0Wolves2LBoxScore
62 - 2018-12-02440Reign3Sound Tigers2LXXBoxScore
63 - 2018-12-03454Sound Tigers2Devils1WBoxScore
66 - 2018-12-06471Barracuda3Sound Tigers2LBoxScore
68 - 2018-12-08484Sound Tigers0Heat1LBoxScore
70 - 2018-12-10501Griffins1Sound Tigers2WXXBoxScore
72 - 2018-12-12515Sound Tigers4Gulls1WBoxScore
75 - 2018-12-15531Gulls0Sound Tigers3WBoxScore
78 - 2018-12-18554Sound Tigers3Senators2WXXBoxScore
79 - 2018-12-19566Bears0Sound Tigers3WBoxScore
83 - 2018-12-23592Wolf Pack3Sound Tigers1LBoxScore
86 - 2018-12-26605Sound Tigers3Icehogs1WBoxScore
88 - 2018-12-28622Condors0Sound Tigers1WBoxScore
90 - 2018-12-30639Sound Tigers4Griffins3WXXBoxScore
92 - 2019-01-01652Monsters5Sound Tigers3LBoxScore
94 - 2019-01-03666Sound Tigers3Reign2WXBoxScore
96 - 2019-01-05683Penguins1Sound Tigers3WBoxScore
98 - 2019-01-07700Sound Tigers4Moose1WBoxScore
99 - 2019-01-08708Sound Tigers2Phantoms0WBoxScore
101 - 2019-01-10722Sound Tigers4Stars3WXXBoxScore
102 - 2019-01-11728Crunch1Sound Tigers0LBoxScore
105 - 2019-01-14754Bears-Sound Tigers-
108 - 2019-01-17771Sound Tigers-Phantoms-
109 - 2019-01-18781Sound Tigers-Barracuda-
110 - 2019-01-19792Crunch-Sound Tigers-
113 - 2019-01-22815Senators-Sound Tigers-
117 - 2019-01-26838Sound Tigers-Rampage-
118 - 2019-01-27844Moose-Sound Tigers-
121 - 2019-01-30865Sound Tigers-Comets-
123 - 2019-02-01877Reign-Sound Tigers-
125 - 2019-02-03902Americans-Sound Tigers-
127 - 2019-02-05916Sound Tigers-Crunch-
128 - 2019-02-06922Sound Tigers-Bears-
129 - 2019-02-07938Admirals-Sound Tigers-
133 - 2019-02-11962Sound Tigers-Marlies-
135 - 2019-02-13968Phantoms-Sound Tigers-
137 - 2019-02-15983Sound Tigers-Wolf Pack-
139 - 2019-02-17998Falcons-Sound Tigers-
140 - 2019-02-181005Sound Tigers-Moose-
142 - 2019-02-201018Sound Tigers-Admirals-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221026Sound Tigers-Monsters-
145 - 2019-02-231036Sound Tigers-Bruins-
147 - 2019-02-251050Senators-Sound Tigers-
150 - 2019-02-281070Monsters-Sound Tigers-
152 - 2019-03-021084Sound Tigers-Crunch-
156 - 2019-03-061107Barracuda-Sound Tigers-
158 - 2019-03-081123Sound Tigers-Monsters-
160 - 2019-03-101134Devils-Sound Tigers-
162 - 2019-03-121145Sound Tigers-Falcons-
166 - 2019-03-161165Phantoms-Sound Tigers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
14 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,659,359$ 2,197,500$ 2,222,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,355,622$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 67 15,962$ 1,069,454$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018471819010819489524911000314547-223980105049427559415024415302926188202582702794695928657010551982110.61%2432788.89%2720121359.36%712129654.94%37062759.01%11978381106326566291
Total Regular Season471819010819489524911000314547-223980105049427559415024415302926188202582702794695928657010551982110.61%2432788.89%2720121359.36%712129654.94%37062759.01%11978381106326566291